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Abstract— Component-based software engineering is a common 
approach to develop and evolve contemporary software systems 
where different component sourcing options are available: 
1)Software developed internally (in-house), 2)Software developed 
outsourced, 3)Commercial of the shelf software, and 4) Open 
Source Software. However, there is little available research on 
what attributes of a component are the most important ones 
when selecting new components. The object of the present study 
is to investigate what matters the most to industry practitioners 
during component selection. We conducted a cross-domain 
anonymous survey with industry practitioners involved in 
component selection. First, the practitioners selected the most 
important attributes from a list. Next, they prioritized their 
selection using the Hundred-Dollar ($100) test. We analyzed the 
results using Compositional Data Analysis. The descriptive 
results showed that Cost was clearly considered the most 
important attribute during the component selection. Other 
important attributes for the practitioners were: Support of the 
component, Longevity prediction, and Level of off-the-shelf fit to 
product. Next an exploratory analysis was conducted based on
the practitioners’ inherent characteristics. Nonparametric tests 
and biplots were used. It seems that smaller organizations and 
more immature products focus on different attributes than 
bigger organizations and mature products which focus more on 
Cost.

Keywords: Component-based software engineering; Decision 
making; Compositional Data Analysis; Cumulative voting

I. INTRODUCTION

Component-based software engineering (CBSE) is a 
common approach to develop and evolve contemporary 
software systems. However, in CBSE it is not always the best 
option to develop internally (in-house) a new component [1].
Thus, the practitioners are very often asked to choose 
between different Component Sourcing Options (CSO). But 
what are the factors that affect the practitioners’ decision to 
choose one CSO against another? In other words, how do the 
practitioners prioritize the attributes of a component when 
they have to decide on “buying” or “making” a new 
component?

Prioritization is a procedure of principal importance in 
decision making. In Software Engineering it is encountered 
in cases where multiple attributes have to be considered in 

order to take a decision. However, the human subjectivity is 
a source of variation when different people try to prioritize 
independently a certain number of attributes. These factors 
led to the adoption of voting schemes where stakeholders 
express their relative preferences for certain attributes in a 
systematic and controlled manner. 

The Cumulative Voting (CV) or 100-Point Method or 
Hundred-Dollar ($100) test, described by Leffingwell and 
Widrig [2], is a simple, straightforward and intuitively 
appealing voting scheme where each stakeholder is given a 
constant amount (e.g. 100, 1000 or 10000) of imaginary units 
(for example monetary) that he or she can use for voting in 
favor of the most important attributes. In this way, the amount 
of money assigned to an attribute represents the respondent’s 
relative preference (and therefore prioritization) in relation to 
the other attributes. The points can be distributed in any way 
that the stakeholder desires. Each stakeholder is free to put 
the whole amount given to him or her on only one attribute 
of dominating importance. It is also possible for a stakeholder 
to distribute equally the amount to many or even to all of the 
attributes. 

Unfortunately, there is little available research on which 
attributes of a component are of principal importance when 
multiple attributes are considered to make a CSO decision. 
Understanding the source of variation between decision 
makers between different CSOs in CBSE may optimize the 
decision process and consolidate opinions with respect to 
prioritization. In the present work, we focused on the 
attributes that practitioners typically compare when they are 
choosing to add or replace a new component for their 
products. The products concern software-intensive systems 
and thus entail component complexity. Therefore, an 
industrial cross-domain anonymous survey regarding the 
practitioners’ decision making in relation to choosing 
between CSOs was conducted. The questionnaire was web-
based and consisted of a number of both open-ended and 
closed-ended questions. The practitioners were asked to 
choose between four different Component Sourcing Options 
(CSO). The CSO decisions can be summarized in the 
following four alternatives [3], [4]:
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● Software developed internally (in-house): This is the 
case where a company develops a component internally. 
In addition, development is still considered in-house 
when the development is distributed in different 
locations, as long as it takes place within the company. 
The source code is developed and remains inside the 
same company.

● Software developed outsourced: Another company is 
developing the component on behalf of the company 
which wants to obtain the component. Usually the 
source code is delivered as part of the contract agreed 
between the two companies. 

● Commercial of the shelf software (COTS): The 
company buys an existing component from a software 
vendor (pre-built). The source code is not available for 
the buyer. 

● Open Source Software (OSS): The company integrates 
a pre-built, existing component that has been developed 
by an open source community as an open source 
software. The source code is publicly accessible.

Practitioners were asked to choose between the above 
mentioned four CSOs and indicate which information is the 
most important input for their decision process. They were 
given 12 attributes (TABLE I. presents the attributes in the 
same order they appeared in the survey). The practitioners 
were asked to prioritize the 12 attributes using Cumulative 
Voting (CV) by distributing 100 imaginary points. The 
number of the respondents was 157. The complete 
description and design of the survey is available here [4].

In our study we aimed to investigate the different views 
of practitioners towards the prioritization of the 12 attributes. 
The results of the Hundred-Dollar ($100) test are coded as 
variables and they are statistically analyzed in order to find 
differences or agreements in views and correlations with 
other inherent characteristics of the practitioners i.e. role, 
working experience, level of education, maturity of the 
product they work with and size of their organization. This 
information was collected also within our survey [4].

However, since the results from the Hundred-Dollar 
($100) test sum up to 1, we cannot treat them as independent 
variables and since they are restricted in the [0,1] interval 
normality assumptions are invalid. A methodology which is 
suitable for the analysis of proportions is Compositional Data 
Analysis, known as CoDA. This methodology has been 
widely used in the analysis of materials composition in 
various scientific fields like chemistry, geology and 
archaeology, but its principles fit to analyze data obtained by 
CV.

The paper is structured as follows: Section II provides an 
outline of the related work. Section III presents the basic 
principles of CoDA and discusses various challenges related 
to its application. Section IV presents the results from the 
application of nonparametric tests and CoDA on the survey 
data. Finally, in Section V conclusions and future work are 
provided.

TABLE I. ATTRIBUTES USED FOR PRIORITIZATION

Attributes Description
1 Size Size of the component, e.g. lines of 

code, memory footprint
2 Longevity prediction Evolution of the component
3 Cost Development, license and 

maintenance cost
4 Level of off-the-shelf fit 

to product
Functional fitness, i.e., how much 
component customization is needed

5 Complexity Code complexity
6 API adequacy Maturity of external APIs
7 Programming language 

Performance
Computational performance

8 Access to relevant 
documentation

Access to documentation

9 Code quality Availability of automated tests, code 
review practices.

10 Support of the 
component

Formal support, channels, active 
development community

11 Adherence to standards Follow the rules
12 Other

II. RELATED WORK

The authors in [5] have conducted a systematic literature 
review about CSO selection. They also investigated decision 
criteria, methods for decision making, and evaluations of the 
decision results. The paper highlighted the CSOs compared 
were mainly focused on In-house vs. COTS and COTS vs. 
OSS. Generally, no other systematic reviews exist on the 
topic of CSO selection.

In a recent case survey [3], 22 case studies of how 
practitioners choose between CSOs are presented. One of the 
conclusions was that the most frequent trade-offs are carried 
out between in-house vs. COTS, in-house vs. outsource, and 
COTS vs. OSS. In-house was the favorable decision option, 
however, the evaluation of the decision showed that many of 
the decisions were perceived as suboptimal, indicating the 
need for optimizing the decision-making process and 
outcomes.

Several primary studies discussing in-house vs. COTS 
CSO decisions exist, i.e. [6] and [7]. In [8], a framework was 
presented to support the decision to buy components or build 
them in-house. The authors in [9] studied decisions made 
during integration of COTS vs. OSS and showed significant 
differences and commonalities. 

Cumulative Voting is known as a prioritization technique, 
used in decision making in various areas. CV has been used 
also in various areas of Software Engineering, such as 
requirements engineering, impact analysis or process
improvement ([10], [11]). Prioritization is performed by 
stakeholders (users, developers, consultants, marketing 
representatives or customers), under different perspectives or 
positions, who respond in questionnaires appropriately 
designed for the purpose of prioritization. CV has been 
proposed as an alternative to the Analytical Hierarchy 
Process (AHP) and its use is continuously expanding to areas 
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such as requirements prioritization and prioritization of 
process improvements [2], [12].

In [10], CV is used in an industrial case study where a 
distributed prioritization process is proposed, observed and 
evaluated. The stakeholders prioritized 58 requirements with 
$100,000 to distribute among the requirements (the large 
amount of “money” was chosen to cope with the large 
number of requirements). In [13] the CV was used for an 
industrial case study on the choice between language 
customization mechanisms. In [14] CV is one of the four 
prioritization methods examined, evaluated and 
recommended for certain stages of a software project. In [15]
18 interviewees were asked to prioritize 25 aspects using CV 
by distributing 1000 imaginary points to the aspects. Each 
interviewee prioritized the 25 aspects twice: Under the 
organizational perspective and under the self-perspective. 
The data were collected during an empirical study on the role 
of Impact Analysis (IA) in the change management process 
at Ericsson AB in Sweden. Compositional Data Analysis 
(CoDA) has been used also in the software effort phase 
distribution analysis [16], [17].

In this paper we used the experience from our former 
studies on CV and on the selection of different CSOs in order 
to investigate what reasons affect practitioners’ decision to 
choose one CSO against another. Moreover, we aimed to 
discover if there are any trends among the practitioners based 
on their inherent characteristics. Therefore, the contribution 
of the paper is twofold: first we describe how the statistical 
framework of CoDA can be used on a prioritization study and 
second, draw conclusions on the reasoning behind decision 
making in components selection based on the practitioners' 
characteristics and their opinions. The main contribution is to 
understand and reason about the intuitive and conditional 
decision-making process of practitioners in CSO selection. 
The methodology is applied in a real survey data so as to draw 
interesting and useful results regarding the practitioners’ 
decision process.

III. THE STATISTICAL FRAMEWORK

A. Compositional Data Analysis (CoDA) 
Compositional Data Analysis (CoDA) is a multivariate 

statistical analysis framework for vectors of variables having 
a certain dependence structure: The values in each vector 
have sum equal to a constant. Usually, for easy reference to 
the same problem, after division by that constant, the sum of 
the values of each vector becomes one. Thus, from now on, 
we can assume that our data set consists of vectors of 
proportions or percentages in the form: 

The important point here is to understand that the data are 
constrained in the [0,1] interval; therefore, the techniques 
applied to samples from the real Euclidean space are not 
applied in a straightforward manner.

Various problems are associated with the analysis of 
those vectors: First, there is a problem of interdependence of 
the proportions (since their sum is 1) and therefore they 
cannot be treated as independent variables (the usual 
assumption of the multivariate methods). Second, their 
values are restricted in the [0,1] interval, so the normality 
assumptions are invalid. Third, we are not really interested in 
absolute values here, but rather for relative values (that is 
actually the meaning of a proportion). Thus, the whole 
problem is transferred to the analysis and the interpretation of 
the ratios of the proportions, i.e. values of the form pi/pj. The 
statistical analysis of these data, using methods based on 
ratios, tries to provide answers to some research problems 
which we encounter in any multivariate statistical analysis.

Concerning now the prioritization questionnaires using 
the 100$ (or the $1000) test, the data is essentially 
representing proportions of the overall importance allocated 
to each of the aspects examined in a study. The relative 
importance of the aspects is represented by their ratios, so 
CoDA seems the appropriate framework for their study. 
Historically, Karl Pearson in 1897 [18] posed the problem of 
interpreting correlations of proportions while the milestone 
for this type of statistical analysis is the pioneer work of John 
Aitchison [19], [20]. A freeware package for compositional 
data analysis is the CoDaPack3D, [21] which was used in the 
present analysis.

B. The problem of the zeros
The variables which form the constrained vectors are the 

attributes in our context, while their values are the priorities. 
The data from the CV questionnaires have some special 
characteristics which cause problems in the analysis.

The problem of zeros is of principal importance. When 
the number of aspects is large, and the individuals are only 
few, the data matrix is usually sparse with a large number of 
zeros. This structure causes problems of interpretation when 
we consider the relative importance. 

Due to the problems of zeros, the various ratios needed 
for the analysis are impossible to compute. It is therefore 
essential and necessary to find first a way of dealing with the 
zeros. In [31] a new simple method is proposed that is most 
stable regarding the choice of the imputed values. This is 
called multiplicative replacement strategy and according to 
it, every vector p=(p1,…,pk), having c zeros, can be replaced 
by a vector r=(r1,…,rk) where: 

where δj is a (small) imputed value for pj. The advantages of 
multiplicative replacement are discussed extensively in [22],
[23]and [24]. This method is implemented in CoDaPack3D.

C. The CLR transformation
In order to treat the data with “common” techniques we 

need to transform them. Aitchison [20] proposed the centered 

g
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log ratio (clr) transformation for transforming the raw 
proportional dataset to the real space and at the same time for 
retaining their correlation structure. The transformation is 
simple and achieved after dividing each component of a 
vector of proportions by their geometric mean. Since in our 
context the data usually contains zeros, the transformation 
can be applied only after the replacement of zeros. The 
formula for the CLR transformation of the compositional 
vector r is: 

where
D. The biplot

The Biplot [25], [26], [27] is a graphical tool that has been 
used in various applications. Its compositional data version is 
a straightforward and useful tool for exploring trends and 
peculiarities in data. 

An exemplary biplot is given in Figure 1. Its basic 
characteristics are the lines (or rays) and the dots. Rays 
represent three variables, (labeled with A, B, and C) and dots 
represent the respondents (the respondents are labeled by 1, 
2, 3 and 4). The origin O represents the center of the 
compositional data set. An important characteristic of the plot 
is the angle between the rays. The interpretation of a ray is as 
follows [28]: the length of a ray shows the variance of the 
corresponding variable. Longer rays depict higher variances. 
Inferring from Figure 1. the variable corresponding to ray A 
shows the highest variance among the variables in the biplot, 
while the variable corresponding to B has the lowest 
variance. A link is an imaginary line connecting the ends of 
two rays. It essentially shows the difference between the two 
variables. Large links show large proportional variation. For 
example, in Figure 1. the lengths of the links show that the 
log-ratio having the largest variation is A/C, which is 
interpreted as a large difference (or dissimilarity or 
divergence) in the values of these two variables which are 
proportions. It is essential to emphasize that, in terms of 
interpretation, links are considered more important than rays 
since the variables can be examined in a more relative and 
intuitive manner. 

Finally, the cosine of the angle between the rays 
approximates the correlation between the CLR 
transformations of the variables. The closer the angle is to 
90°, or to 270°, the smaller the correlation. An angle near to 
0° or 180° reflects strong positive or negative correlation 
respectively. 

The position of the dots with respect to the links indicates 
the relative values of the variables. For example, in Figure 1. 
the dot for respondent #2 has a higher value in variable A 
compared to variable B or C. Finally, the projection of a 
specific dot to a variable line estimates the value of that 
project on the variable that the line represents. If the 
projection falls on the origin, the value of the project is 
roughly the average of the respective variable. Projections of 
the dots which intersect the variable line in the same direction 

indicate high values, while projections which intersect the 
variable line, which have been extended through the origin, 
represent low values. Therefore, respondent #2 stands out 
with the highest value in variable A followed by respondent 
#4, respondent #1 that seem to have an average value for 
variable A, and finally respondent #3 seems to have the 
lowest (or below average) value for variable A.

Figure 1. The basic characteristics of a biplot

IV. RESULTS

A. Descriptive Statistics
The results from the descriptive statistics are available at 

Table II and Figure 2. Table ΙΙ summarizes the answers of the 
practitioners in absolute numbers and under two perspectives, 
the number of the practitioners that choose an attribute and 
the total points an attribute received from all the practitioners. 
The practitioners were free to select any number of attributes. 
The attributes are in descending order based on the 
practitioners’ choices. 

The analysis showed that Cost is clearly considered the 
most important attribute between the practitioners when 
making CSO decisions, selected by 121 out of 157 
practitioners (77%). The inputs that are also considered 
important at the decision process and are mentioned by 
roughly half of the practitioners are: Support of the 
Components (74 out of 157, 47%), Longevity prediction (71 
out of 157, 45%) and Level of off-the-shelf fit to product (62 
out of 157, 40%). An interesting finding is that Support of a 
component is the second most popular choice between the 
practitioners. However, it is 4th in the total points received 
and the maximum amount of point it got from a practitioner 
is 50. In other words, even the practitioners did not assign 
high values to this choice, still they consider it an important 
factor that should be taken into account. The same is true for 
Longevity prediction (maximum amount of points: 60, 
however it is second in the total amount of points received).

On the other hand, Size is rarely selected, only by 18 out 
of 157, (9%). The number of Other is also low (18 out of 157, 
9%) which reveals that the list of the given attributes covers 
the most important criteria needed to evaluate a component 
by the practitioners. Among the Other answers, the most 
frequent responses included licensing issues and long-term 
strategy such as differentiation on the market and vendor 
relations. However, these were responses mentioned by just 
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18 practitioners and thus do not raise any threats to the 
attributes selected to be included in the survey.

TABLE II. DESCRIPTIVE STATISTICS

Attributes Min Max Number of 
respondents

Total 
points

Cost 0 100 121 3935
Support of the 
component

0
50 74 1343

Longevity prediction 0 60 71 1513
Level of off-the-shelf fit 
to product

0
75 62 1499

API adequacy 0 100 56 1195
Access to relevant 
documentation

0
100 53 1050

Code quality 0 100 53 1280
Adherence to standards 0 50 42 833
Programming language 
Performance

0
100 41 1112

Complexity 0 50 33 695
Size 0 60 18 435
Other 0 100 18 810

Figure 2. Number of respondents VS Total points choose each attribute

B. Non- Parametric tests
The prioritized data was transformed with the methods of 

CoDa described in the previous section (replacement of zeros 
and CLR transformation) and Kruskal – Wallis, a 
nonparametric test [29], was applied to the obtained data. The 
test was performed in order to investigate the distribution of 
each attribute across to all the demographic characteristics. 
Pairwise comparisons were also performed using Dunn's [30]
procedure with a Bonferroni correction [31] for multiple 
comparisons. However, the results revealed that there are no
statistical differences between:
● the different roles of the practitioners,
● the practitioners with different working experience, 

and 
● the education of the practitioners 

and the way the practitioners prioritize the 12 aspects. 
Therefore, in order to explore trends and peculiarities 

among our population, we need a powerful descriptive tool 
designed for this nature of the data: the biplot. 

C. CoDA Analysis – Biplot
1) All practitioners

Figure 3. illustrates the biplot for the prioritization of the 
12 aspects by all the 157 practitioners. The practitioners are 
represented by dots while the rays represent the 12 aspects. 
The results showed that there is a wide spread of the dots in 
all the axes, and long rays (thus long links too) for most of 
the aspects. These indicate high dissimilarity between the 
practitioners, large variability among the aspects and some 
interesting correlations between variables. The biplot clearly 
depicts the high level of complexity of the decision process 
and can illustrate how dissimilarly the practitioners prioritize 
each choice. More specifically:
● The longest rays correspond to Level off-the-shelf fit to 

product, Code quality, Cost and Longevity prediction
indicating the aspects with the highest variance. In other 
words, practitioners allocated values from 0 to 100 to 
those attributes. 

● The longest links are the ones between Cost and Access 
to documentation, between Longevity prediction and 
Code quality and between Level off-the-shelf fit to 
product and Adherence to standards. Therefore, the 
largest differences, considering all aspects together, are 
located between these pairs of variables which also seem 
to be negatively correlated (due to the nearly 180 angles 
that they have). For example, if a practitioner chooses to 
allocate more monetary points to Cost then we assume 
that he/she will assign almost 0 points to Access to 
documentation and the other way round. 

● The shortest link connects the ray ends of Size and 
Complexity and indicates that the distribution in those 
two aspects is quite similar and positively correlated (due 
to the nearly zero angle that they have). Longevity 
Prediction and Support of a component seem to be 
positively correlated too. In other words, the 
practitioners tend to allocate the same amount of points 
for the aforementioned aspect. For example, Size and 
Complexity.

● The nearly orthogonal pairs of variables (the rays that 
form with each other right angles), for example the ones 
corresponding to Cost and Code quality or Level off-the-
shelf fit to product indicate correlation of these aspects 
with Cost close to zero, which means that we can claim 
that the way a practitioner allocates the points for the two 
above-mentioned attributes is not related either positive 
or negative. 
Regarding the distribution of the practitioners with 

respect to the attributes prioritized, there are areas of high 
density as well as areas of low density. This means that 
groupings of practitioners exist, having differences in their 
attributes prioritized. For example, there is a group of high 
density near Cost which means that a large number of 
practitioners have assigned larger proportion of effort to the 
Cost.

At the next step, a deeper analysis on practitioners’ 
decision process was conducted based on their inherent 
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characteristics. The characteristics that were investigated 
were related to the role a practitioner holds in the company, 
their general working experience and educational level, the 
maturity of the product they are working on and the size of 
the company they belong to. Each group of practitioners was
aggregated by computing the mean value of their preferences. 
In the following figures the groupings of the practitioners’ 
inherent characteristics appear in the dots in italics.

2) Role
Figure 4. illustrates a biplot of the practitioners grouped 

by their role within the company. It is clear that external and 
employees working with legal issues are having completely 
different aspect prioritizations from the rest of the employees. 
More specifically they are deciding on changing a component 
based on other issues i.e. licensing issues or vendor relations.

On the other hand, the practitioners who work with 
management (strategic and operational) but also product 
developers, are deciding the change of a component based on 
issues related to the Level of off-the-shelf fit to product and 
Code quality.

3) Working Experience
From Figure 5. it is clear that the employees having small 

working experience are interested more on issues related with 
Level of off-the-shelf fit to product, Access to the relevant 
documentation and API adequacy. On the contrary, more 
experienced employees focus more on the Code quality and 
the Support of the component.

4) Educational level
The practitioners with university education seem to 

consider similar attributes for their decision process (i.e. 
Level of off-the-shelf fit to product and Access to the relevant 
documentation). Size seems also to be considered among the 
practitioners with academic background. Practitioners 
attended professional courses and trade school education, 
when they are choosing a new component, they consider 
more important as input attributes related with development 
and the usage of the new component i.e. Complexity, 
Programming language performance and Code Quality.
(Figure 6.).

5) Maturity of the product
From Figure 7. we can claim that the practitioners who 

work on more mature products (more than 15 years) giving 
more emphasis on non-functional attributes (i.e. Size). 
However, Cost is still their first priority. On the other hand, 
the practitioners who work with less matured and newly 
established products (less than 10 years) seem to be more 
interested in Complexity and API adequacy, and they are not 
focused so much on the Cost.

6) Size of the company
Regarding, the size of the company, a practitioner works 

at, the results are available in Figure 8. It seems that smaller 
organizations are focusing more on development and 
maintenance of the component (Complexity, API Adequacy
and Access to relevant documentation). On the other hand, 
bigger organizations focus on properties associated with 
Cost.

Figure 3. All practitioners prioritize all attributes

Figure 4. Practitioners grouped by their role

Figure 5. Practitioners grouped by their working experience
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Figure 6. Practitioners grouped by their education

Figure 7. Practitioners grouped by the maturity of the product they are 
working with

Figure 8. Practitioners grouped by the size of their company

V. CONCLUSIONS

The present study focuses on the investigation of what 
matters the most to industry practitioners during component 
selection. The descriptive results showed that Cost is clearly 
considered the most important attribute during the 
component selection. Other important attributes for the 
practitioners were: Support of the component, Longevity 
prediction, and Level of off-the-shelf fit to product. However, 
after more detailed analysis based on practitioners’ inherent 
characteristics, it seems that smaller organizations and more 
immature products focus on properties associated with ease 
of use, development and maintenance of the component. On 
the other hand, bigger organizations and more mature 
products focus more on properties associated with cost. 
Therefore, smaller companies need support in order to 
identify components more easily that have more ease of use 
regarding the development. On the other side of the spectrum, 
bigger organizations with mature products need and are 
looking for less costly components.

The data gathered in such studies are affected by various 
sources of variation and are therefore subject to large 
variability. The statistical analysis of such data can reveal 
significant differences, trends, disagreements and groupings 
between the practitioners and can constitute a valuable aid for 
understanding the attitudes and opinions of the interviewed 
persons and therefore a tool for decision making.

Regarding the validity threats, and more specifically 
construction validity, since the practitioners work for
different organizations and products, their component 
selection may differ; however, the deeper analysis on 
practitioners’ decision process based on their inherent 
characteristics was valuable. Overall, the study is clearly 
exploratory and by no means can the findings be generalized 
to an isolated situation or company. The practitioners do not 
constitute a random sample; however, they were approached 
for their experience and expertise, so their responses are 
considered valid. 

As a future work, we will investigate how do the 
preferences on specific CSOs affect the prioritization of the 
aspects investigated in this work, which are seen in isolation. 
Our focus is in providing support to companies in improving 
their component selection process. Within our work we plan 
to continue research and efforts towards efficient and 
effective decision making in component-based software 
engineering.
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