
Component selection in Software Engineering - Which attributes are the most
important in the decision process?

Panagiota Chatzipetrou1, Emil Alégroth1, Efi Papatheocharous2, Markus Borg2, Tony Gorschek1,Krzysztof Wnuk1

1.Software Research Engineering Lab (SERL)
Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

e-mail: {panagiota.chatzipetrou, emil.alegroth,
tony.gorschek, krzyszstof.wnuk}@bth.se

2.RISE SICS AB,
Scheelevägen 17,

SE-223 70, Lund, Sweden
e-mail: {efi.papatheocharous, markus.borg}@ri.se

Abstract— Component-based software engineering is a common
approach to develop and evolve contemporary software systems
where different component sourcing options are available:
1)Software developed internally (in-house), 2)Software developed
outsourced, 3)Commercial of the shelf software, and 4) Open
Source Software. However, there is little available research on
what attributes of a component are the most important ones
when selecting new components. The object of the present study
is to investigate what matters the most to industry practitioners
during component selection. We conducted a cross-domain
anonymous survey with industry practitioners involved in
component selection. First, the practitioners selected the most
important attributes from a list. Next, they prioritized their
selection using the Hundred-Dollar ($100) test. We analyzed the
results using Compositional Data Analysis. The descriptive
results showed that Cost was clearly considered the most
important attribute during the component selection. Other
important attributes for the practitioners were: Support of the
component, Longevity prediction, and Level of off-the-shelf fit to
product. Next an exploratory analysis was conducted based on
the practitioners’ inherent characteristics. Nonparametric tests
and biplots were used. It seems that smaller organizations and
more immature products focus on different attributes than
bigger organizations and mature products which focus more on
Cost.

Keywords: Component-based software engineering; Decision
making; Compositional Data Analysis; Cumulative voting

I. INTRODUCTION

Component-based software engineering (CBSE) is a
common approach to develop and evolve contemporary
software systems. However, in CBSE it is not always the best
option to develop internally (in-house) a new component [1].
Thus, the practitioners are very often asked to choose
between different Component Sourcing Options (CSO). But
what are the factors that affect the practitioners’ decision to
choose one CSO against another? In other words, how do the
practitioners prioritize the attributes of a component when
they have to decide on “buying” or “making” a new
component?

Prioritization is a procedure of principal importance in
decision making. In Software Engineering it is encountered
in cases where multiple attributes have to be considered in

order to take a decision. However, the human subjectivity is
a source of variation when different people try to prioritize
independently a certain number of attributes. These factors
led to the adoption of voting schemes where stakeholders
express their relative preferences for certain attributes in a
systematic and controlled manner.

The Cumulative Voting (CV) or 100-Point Method or
Hundred-Dollar ($100) test, described by Leffingwell and
Widrig [2], is a simple, straightforward and intuitively
appealing voting scheme where each stakeholder is given a
constant amount (e.g. 100, 1000 or 10000) of imaginary units
(for example monetary) that he or she can use for voting in
favor of the most important attributes. In this way, the amount
of money assigned to an attribute represents the respondent’s
relative preference (and therefore prioritization) in relation to
the other attributes. The points can be distributed in any way
that the stakeholder desires. Each stakeholder is free to put
the whole amount given to him or her on only one attribute
of dominating importance. It is also possible for a stakeholder
to distribute equally the amount to many or even to all of the
attributes.

Unfortunately, there is little available research on which
attributes of a component are of principal importance when
multiple attributes are considered to make a CSO decision.
Understanding the source of variation between decision
makers between different CSOs in CBSE may optimize the
decision process and consolidate opinions with respect to
prioritization. In the present work, we focused on the
attributes that practitioners typically compare when they are
choosing to add or replace a new component for their
products. The products concern software-intensive systems
and thus entail component complexity. Therefore, an
industrial cross-domain anonymous survey regarding the
practitioners’ decision making in relation to choosing
between CSOs was conducted. The questionnaire was web-
based and consisted of a number of both open-ended and
closed-ended questions. The practitioners were asked to
choose between four different Component Sourcing Options
(CSO). The CSO decisions can be summarized in the
following four alternatives [3], [4]:

198

2018 44th Euromicro Conference on Software Engineering and Advanced Applications

978-1-5386-7383-6/18/$31.00 ©2018 IEEE
DOI 10.1109/SEAA.2018.00039

● Software developed internally (in-house): This is the
case where a company develops a component internally.
In addition, development is still considered in-house
when the development is distributed in different
locations, as long as it takes place within the company.
The source code is developed and remains inside the
same company.

● Software developed outsourced: Another company is
developing the component on behalf of the company
which wants to obtain the component. Usually the
source code is delivered as part of the contract agreed
between the two companies.

● Commercial of the shelf software (COTS): The
company buys an existing component from a software
vendor (pre-built). The source code is not available for
the buyer.

● Open Source Software (OSS): The company integrates
a pre-built, existing component that has been developed
by an open source community as an open source
software. The source code is publicly accessible.

Practitioners were asked to choose between the above
mentioned four CSOs and indicate which information is the
most important input for their decision process. They were
given 12 attributes (TABLE I. presents the attributes in the
same order they appeared in the survey). The practitioners
were asked to prioritize the 12 attributes using Cumulative
Voting (CV) by distributing 100 imaginary points. The
number of the respondents was 157. The complete
description and design of the survey is available here [4].

In our study we aimed to investigate the different views
of practitioners towards the prioritization of the 12 attributes.
The results of the Hundred-Dollar ($100) test are coded as
variables and they are statistically analyzed in order to find
differences or agreements in views and correlations with
other inherent characteristics of the practitioners i.e. role,
working experience, level of education, maturity of the
product they work with and size of their organization. This
information was collected also within our survey [4].

However, since the results from the Hundred-Dollar
($100) test sum up to 1, we cannot treat them as independent
variables and since they are restricted in the [0,1] interval
normality assumptions are invalid. A methodology which is
suitable for the analysis of proportions is Compositional Data
Analysis, known as CoDA. This methodology has been
widely used in the analysis of materials composition in
various scientific fields like chemistry, geology and
archaeology, but its principles fit to analyze data obtained by
CV.

The paper is structured as follows: Section II provides an
outline of the related work. Section III presents the basic
principles of CoDA and discusses various challenges related
to its application. Section IV presents the results from the
application of nonparametric tests and CoDA on the survey
data. Finally, in Section V conclusions and future work are
provided.

TABLE I. ATTRIBUTES USED FOR PRIORITIZATION

Attributes Description
1 Size Size of the component, e.g. lines of

code, memory footprint
2 Longevity prediction Evolution of the component
3 Cost Development, license and

maintenance cost
4 Level of off-the-shelf fit

to product
Functional fitness, i.e., how much
component customization is needed

5 Complexity Code complexity
6 API adequacy Maturity of external APIs
7 Programming language

Performance
Computational performance

8 Access to relevant
documentation

Access to documentation

9 Code quality Availability of automated tests, code
review practices.

10 Support of the
component

Formal support, channels, active
development community

11 Adherence to standards Follow the rules
12 Other

II. RELATED WORK

The authors in [5] have conducted a systematic literature
review about CSO selection. They also investigated decision
criteria, methods for decision making, and evaluations of the
decision results. The paper highlighted the CSOs compared
were mainly focused on In-house vs. COTS and COTS vs.
OSS. Generally, no other systematic reviews exist on the
topic of CSO selection.

In a recent case survey [3], 22 case studies of how
practitioners choose between CSOs are presented. One of the
conclusions was that the most frequent trade-offs are carried
out between in-house vs. COTS, in-house vs. outsource, and
COTS vs. OSS. In-house was the favorable decision option,
however, the evaluation of the decision showed that many of
the decisions were perceived as suboptimal, indicating the
need for optimizing the decision-making process and
outcomes.

Several primary studies discussing in-house vs. COTS
CSO decisions exist, i.e. [6] and [7]. In [8], a framework was
presented to support the decision to buy components or build
them in-house. The authors in [9] studied decisions made
during integration of COTS vs. OSS and showed significant
differences and commonalities.

Cumulative Voting is known as a prioritization technique,
used in decision making in various areas. CV has been used
also in various areas of Software Engineering, such as
requirements engineering, impact analysis or process
improvement ([10], [11]). Prioritization is performed by
stakeholders (users, developers, consultants, marketing
representatives or customers), under different perspectives or
positions, who respond in questionnaires appropriately
designed for the purpose of prioritization. CV has been
proposed as an alternative to the Analytical Hierarchy
Process (AHP) and its use is continuously expanding to areas

199

such as requirements prioritization and prioritization of
process improvements [2], [12].

In [10], CV is used in an industrial case study where a
distributed prioritization process is proposed, observed and
evaluated. The stakeholders prioritized 58 requirements with
$100,000 to distribute among the requirements (the large
amount of “money” was chosen to cope with the large
number of requirements). In [13] the CV was used for an
industrial case study on the choice between language
customization mechanisms. In [14] CV is one of the four
prioritization methods examined, evaluated and
recommended for certain stages of a software project. In [15]
18 interviewees were asked to prioritize 25 aspects using CV
by distributing 1000 imaginary points to the aspects. Each
interviewee prioritized the 25 aspects twice: Under the
organizational perspective and under the self-perspective.
The data were collected during an empirical study on the role
of Impact Analysis (IA) in the change management process
at Ericsson AB in Sweden. Compositional Data Analysis
(CoDA) has been used also in the software effort phase
distribution analysis [16], [17].

In this paper we used the experience from our former
studies on CV and on the selection of different CSOs in order
to investigate what reasons affect practitioners’ decision to
choose one CSO against another. Moreover, we aimed to
discover if there are any trends among the practitioners based
on their inherent characteristics. Therefore, the contribution
of the paper is twofold: first we describe how the statistical
framework of CoDA can be used on a prioritization study and
second, draw conclusions on the reasoning behind decision
making in components selection based on the practitioners'
characteristics and their opinions. The main contribution is to
understand and reason about the intuitive and conditional
decision-making process of practitioners in CSO selection.
The methodology is applied in a real survey data so as to draw
interesting and useful results regarding the practitioners’
decision process.

III. THE STATISTICAL FRAMEWORK

A. Compositional Data Analysis (CoDA)
Compositional Data Analysis (CoDA) is a multivariate

statistical analysis framework for vectors of variables having
a certain dependence structure: The values in each vector
have sum equal to a constant. Usually, for easy reference to
the same problem, after division by that constant, the sum of
the values of each vector becomes one. Thus, from now on,
we can assume that our data set consists of vectors of
proportions or percentages in the form:

The important point here is to understand that the data are
constrained in the [0,1] interval; therefore, the techniques
applied to samples from the real Euclidean space are not
applied in a straightforward manner.

Various problems are associated with the analysis of
those vectors: First, there is a problem of interdependence of
the proportions (since their sum is 1) and therefore they
cannot be treated as independent variables (the usual
assumption of the multivariate methods). Second, their
values are restricted in the [0,1] interval, so the normality
assumptions are invalid. Third, we are not really interested in
absolute values here, but rather for relative values (that is
actually the meaning of a proportion). Thus, the whole
problem is transferred to the analysis and the interpretation of
the ratios of the proportions, i.e. values of the form pi/pj. The
statistical analysis of these data, using methods based on
ratios, tries to provide answers to some research problems
which we encounter in any multivariate statistical analysis.

Concerning now the prioritization questionnaires using
the 100$ (or the $1000) test, the data is essentially
representing proportions of the overall importance allocated
to each of the aspects examined in a study. The relative
importance of the aspects is represented by their ratios, so
CoDA seems the appropriate framework for their study.
Historically, Karl Pearson in 1897 [18] posed the problem of
interpreting correlations of proportions while the milestone
for this type of statistical analysis is the pioneer work of John
Aitchison [19], [20]. A freeware package for compositional
data analysis is the CoDaPack3D, [21] which was used in the
present analysis.

B. The problem of the zeros
The variables which form the constrained vectors are the

attributes in our context, while their values are the priorities.
The data from the CV questionnaires have some special
characteristics which cause problems in the analysis.

The problem of zeros is of principal importance. When
the number of aspects is large, and the individuals are only
few, the data matrix is usually sparse with a large number of
zeros. This structure causes problems of interpretation when
we consider the relative importance.

Due to the problems of zeros, the various ratios needed
for the analysis are impossible to compute. It is therefore
essential and necessary to find first a way of dealing with the
zeros. In [31] a new simple method is proposed that is most
stable regarding the choice of the imputed values. This is
called multiplicative replacement strategy and according to
it, every vector p=(p1,…,pk), having c zeros, can be replaced
by a vector r=(r1,…,rk) where:

where δj is a (small) imputed value for pj. The advantages of
multiplicative replacement are discussed extensively in [22],
[23]and [24]. This method is implemented in CoDaPack3D.

C. The CLR transformation
In order to treat the data with “common” techniques we

need to transform them. Aitchison [20] proposed the centered

g

()

200

log ratio (clr) transformation for transforming the raw
proportional dataset to the real space and at the same time for
retaining their correlation structure. The transformation is
simple and achieved after dividing each component of a
vector of proportions by their geometric mean. Since in our
context the data usually contains zeros, the transformation
can be applied only after the replacement of zeros. The
formula for the CLR transformation of the compositional
vector r is:

where
D. The biplot

The Biplot [25], [26], [27] is a graphical tool that has been
used in various applications. Its compositional data version is
a straightforward and useful tool for exploring trends and
peculiarities in data.

An exemplary biplot is given in Figure 1. Its basic
characteristics are the lines (or rays) and the dots. Rays
represent three variables, (labeled with A, B, and C) and dots
represent the respondents (the respondents are labeled by 1,
2, 3 and 4). The origin O represents the center of the
compositional data set. An important characteristic of the plot
is the angle between the rays. The interpretation of a ray is as
follows [28]: the length of a ray shows the variance of the
corresponding variable. Longer rays depict higher variances.
Inferring from Figure 1. the variable corresponding to ray A
shows the highest variance among the variables in the biplot,
while the variable corresponding to B has the lowest
variance. A link is an imaginary line connecting the ends of
two rays. It essentially shows the difference between the two
variables. Large links show large proportional variation. For
example, in Figure 1. the lengths of the links show that the
log-ratio having the largest variation is A/C, which is
interpreted as a large difference (or dissimilarity or
divergence) in the values of these two variables which are
proportions. It is essential to emphasize that, in terms of
interpretation, links are considered more important than rays
since the variables can be examined in a more relative and
intuitive manner.

Finally, the cosine of the angle between the rays
approximates the correlation between the CLR
transformations of the variables. The closer the angle is to
90°, or to 270°, the smaller the correlation. An angle near to
0° or 180° reflects strong positive or negative correlation
respectively.

The position of the dots with respect to the links indicates
the relative values of the variables. For example, in Figure 1.
the dot for respondent #2 has a higher value in variable A
compared to variable B or C. Finally, the projection of a
specific dot to a variable line estimates the value of that
project on the variable that the line represents. If the
projection falls on the origin, the value of the project is
roughly the average of the respective variable. Projections of
the dots which intersect the variable line in the same direction

indicate high values, while projections which intersect the
variable line, which have been extended through the origin,
represent low values. Therefore, respondent #2 stands out
with the highest value in variable A followed by respondent
#4, respondent #1 that seem to have an average value for
variable A, and finally respondent #3 seems to have the
lowest (or below average) value for variable A.

Figure 1. The basic characteristics of a biplot

IV. RESULTS

A. Descriptive Statistics
The results from the descriptive statistics are available at

Table II and Figure 2. Table ΙΙ summarizes the answers of the
practitioners in absolute numbers and under two perspectives,
the number of the practitioners that choose an attribute and
the total points an attribute received from all the practitioners.
The practitioners were free to select any number of attributes.
The attributes are in descending order based on the
practitioners’ choices.

The analysis showed that Cost is clearly considered the
most important attribute between the practitioners when
making CSO decisions, selected by 121 out of 157
practitioners (77%). The inputs that are also considered
important at the decision process and are mentioned by
roughly half of the practitioners are: Support of the
Components (74 out of 157, 47%), Longevity prediction (71
out of 157, 45%) and Level of off-the-shelf fit to product (62
out of 157, 40%). An interesting finding is that Support of a
component is the second most popular choice between the
practitioners. However, it is 4th in the total points received
and the maximum amount of point it got from a practitioner
is 50. In other words, even the practitioners did not assign
high values to this choice, still they consider it an important
factor that should be taken into account. The same is true for
Longevity prediction (maximum amount of points: 60,
however it is second in the total amount of points received).

On the other hand, Size is rarely selected, only by 18 out
of 157, (9%). The number of Other is also low (18 out of 157,
9%) which reveals that the list of the given attributes covers
the most important criteria needed to evaluate a component
by the practitioners. Among the Other answers, the most
frequent responses included licensing issues and long-term
strategy such as differentiation on the market and vendor
relations. However, these were responses mentioned by just

201

18 practitioners and thus do not raise any threats to the
attributes selected to be included in the survey.

TABLE II. DESCRIPTIVE STATISTICS

Attributes Min Max Number of
respondents

Total
points

Cost 0 100 121 3935
Support of the
component

0
50 74 1343

Longevity prediction 0 60 71 1513
Level of off-the-shelf fit
to product

0
75 62 1499

API adequacy 0 100 56 1195
Access to relevant
documentation

0
100 53 1050

Code quality 0 100 53 1280
Adherence to standards 0 50 42 833
Programming language
Performance

0
100 41 1112

Complexity 0 50 33 695
Size 0 60 18 435
Other 0 100 18 810

Figure 2. Number of respondents VS Total points choose each attribute

B. Non- Parametric tests
The prioritized data was transformed with the methods of

CoDa described in the previous section (replacement of zeros
and CLR transformation) and Kruskal – Wallis, a
nonparametric test [29], was applied to the obtained data. The
test was performed in order to investigate the distribution of
each attribute across to all the demographic characteristics.
Pairwise comparisons were also performed using Dunn's [30]
procedure with a Bonferroni correction [31] for multiple
comparisons. However, the results revealed that there are no
statistical differences between:
● the different roles of the practitioners,
● the practitioners with different working experience,

and
● the education of the practitioners

and the way the practitioners prioritize the 12 aspects.
Therefore, in order to explore trends and peculiarities

among our population, we need a powerful descriptive tool
designed for this nature of the data: the biplot.

C. CoDA Analysis – Biplot
1) All practitioners

Figure 3. illustrates the biplot for the prioritization of the
12 aspects by all the 157 practitioners. The practitioners are
represented by dots while the rays represent the 12 aspects.
The results showed that there is a wide spread of the dots in
all the axes, and long rays (thus long links too) for most of
the aspects. These indicate high dissimilarity between the
practitioners, large variability among the aspects and some
interesting correlations between variables. The biplot clearly
depicts the high level of complexity of the decision process
and can illustrate how dissimilarly the practitioners prioritize
each choice. More specifically:
● The longest rays correspond to Level off-the-shelf fit to

product, Code quality, Cost and Longevity prediction
indicating the aspects with the highest variance. In other
words, practitioners allocated values from 0 to 100 to
those attributes.

● The longest links are the ones between Cost and Access
to documentation, between Longevity prediction and
Code quality and between Level off-the-shelf fit to
product and Adherence to standards. Therefore, the
largest differences, considering all aspects together, are
located between these pairs of variables which also seem
to be negatively correlated (due to the nearly 180 angles
that they have). For example, if a practitioner chooses to
allocate more monetary points to Cost then we assume
that he/she will assign almost 0 points to Access to
documentation and the other way round.

● The shortest link connects the ray ends of Size and
Complexity and indicates that the distribution in those
two aspects is quite similar and positively correlated (due
to the nearly zero angle that they have). Longevity
Prediction and Support of a component seem to be
positively correlated too. In other words, the
practitioners tend to allocate the same amount of points
for the aforementioned aspect. For example, Size and
Complexity.

● The nearly orthogonal pairs of variables (the rays that
form with each other right angles), for example the ones
corresponding to Cost and Code quality or Level off-the-
shelf fit to product indicate correlation of these aspects
with Cost close to zero, which means that we can claim
that the way a practitioner allocates the points for the two
above-mentioned attributes is not related either positive
or negative.
Regarding the distribution of the practitioners with

respect to the attributes prioritized, there are areas of high
density as well as areas of low density. This means that
groupings of practitioners exist, having differences in their
attributes prioritized. For example, there is a group of high
density near Cost which means that a large number of
practitioners have assigned larger proportion of effort to the
Cost.

At the next step, a deeper analysis on practitioners’
decision process was conducted based on their inherent

202

characteristics. The characteristics that were investigated
were related to the role a practitioner holds in the company,
their general working experience and educational level, the
maturity of the product they are working on and the size of
the company they belong to. Each group of practitioners was
aggregated by computing the mean value of their preferences.
In the following figures the groupings of the practitioners’
inherent characteristics appear in the dots in italics.

2) Role
Figure 4. illustrates a biplot of the practitioners grouped

by their role within the company. It is clear that external and
employees working with legal issues are having completely
different aspect prioritizations from the rest of the employees.
More specifically they are deciding on changing a component
based on other issues i.e. licensing issues or vendor relations.

On the other hand, the practitioners who work with
management (strategic and operational) but also product
developers, are deciding the change of a component based on
issues related to the Level of off-the-shelf fit to product and
Code quality.

3) Working Experience
From Figure 5. it is clear that the employees having small

working experience are interested more on issues related with
Level of off-the-shelf fit to product, Access to the relevant
documentation and API adequacy. On the contrary, more
experienced employees focus more on the Code quality and
the Support of the component.

4) Educational level
The practitioners with university education seem to

consider similar attributes for their decision process (i.e.
Level of off-the-shelf fit to product and Access to the relevant
documentation). Size seems also to be considered among the
practitioners with academic background. Practitioners
attended professional courses and trade school education,
when they are choosing a new component, they consider
more important as input attributes related with development
and the usage of the new component i.e. Complexity,
Programming language performance and Code Quality.
(Figure 6.).

5) Maturity of the product
From Figure 7. we can claim that the practitioners who

work on more mature products (more than 15 years) giving
more emphasis on non-functional attributes (i.e. Size).
However, Cost is still their first priority. On the other hand,
the practitioners who work with less matured and newly
established products (less than 10 years) seem to be more
interested in Complexity and API adequacy, and they are not
focused so much on the Cost.

6) Size of the company
Regarding, the size of the company, a practitioner works

at, the results are available in Figure 8. It seems that smaller
organizations are focusing more on development and
maintenance of the component (Complexity, API Adequacy
and Access to relevant documentation). On the other hand,
bigger organizations focus on properties associated with
Cost.

Figure 3. All practitioners prioritize all attributes

Figure 4. Practitioners grouped by their role

Figure 5. Practitioners grouped by their working experience

203

Figure 6. Practitioners grouped by their education

Figure 7. Practitioners grouped by the maturity of the product they are
working with

Figure 8. Practitioners grouped by the size of their company

V. CONCLUSIONS

The present study focuses on the investigation of what
matters the most to industry practitioners during component
selection. The descriptive results showed that Cost is clearly
considered the most important attribute during the
component selection. Other important attributes for the
practitioners were: Support of the component, Longevity
prediction, and Level of off-the-shelf fit to product. However,
after more detailed analysis based on practitioners’ inherent
characteristics, it seems that smaller organizations and more
immature products focus on properties associated with ease
of use, development and maintenance of the component. On
the other hand, bigger organizations and more mature
products focus more on properties associated with cost.
Therefore, smaller companies need support in order to
identify components more easily that have more ease of use
regarding the development. On the other side of the spectrum,
bigger organizations with mature products need and are
looking for less costly components.

The data gathered in such studies are affected by various
sources of variation and are therefore subject to large
variability. The statistical analysis of such data can reveal
significant differences, trends, disagreements and groupings
between the practitioners and can constitute a valuable aid for
understanding the attitudes and opinions of the interviewed
persons and therefore a tool for decision making.

Regarding the validity threats, and more specifically
construction validity, since the practitioners work for
different organizations and products, their component
selection may differ; however, the deeper analysis on
practitioners’ decision process based on their inherent
characteristics was valuable. Overall, the study is clearly
exploratory and by no means can the findings be generalized
to an isolated situation or company. The practitioners do not
constitute a random sample; however, they were approached
for their experience and expertise, so their responses are
considered valid.

As a future work, we will investigate how do the
preferences on specific CSOs affect the prioritization of the
aspects investigated in this work, which are seen in isolation.
Our focus is in providing support to companies in improving
their component selection process. Within our work we plan
to continue research and efforts towards efficient and
effective decision making in component-based software
engineering.

VI. ACKNOWLEDGMENTS

The work is partially supported by a research grant for the
ORION project (reference number 20140218) from The
Knowledge Foundation in Sweden. The authors have no
competing interests to declare.

VII. REFERENCES

[1] Wohlin, C., Wnuk, K., Smite, D., Franke, U., Badampudi, D., &
Cicchetti, A. (2016, June). Supporting strategic decision-making for

204

selection of software assets. In International Conference of Software
Business (pp. 1-15). Springer, Cham.

[2] Leffingwell, D. and D. Widrig, Managing software requirements: A
Use Case Approach, 2nd ed. Addison-Wesley, Boston, 2003.

[3] Petersen, K., Badampudi, D., Shah, S., Wnuk, K., Gorschek, T.,
Papatheocharous, E., ... & Cicchetti, A. (2017). Choosing Component
Origins for Software Intensive Systems: In-house, COTS, OSS or
Outsourcing? -A Case Survey. IEEE Transactions on Software
Engineering.

[4] Borg, M., Chatzipetrou, P., Wnuk, K., Alégroth, E., Gorschek, T.,
Papatheocharous, E., Shah, SMA. & Jakob Axelsson, J., (2018).
Selecting Component Sourcing Options: A Survey of Software
Engineering’s Broader Make-or-Buy Decisions. Journal of Systems
and Software (under revision).

[5] Badampudi, D., Wohlin, C., & Petersen, K. (2016). Software
component decision-making: In-house, OSS, COTS or outsourcing-A
systematic literature review. Journal of Systems and Software, 121,
105-124.

[6] Brownsworth at al. (2000), Brownsword, L., Oberndorf, T., & Sledge,
C. A. (2000). Developing new processes for COTS-based
systems. IEEE software, 17(4), 48-55.

[7] Li, J., Bjørnson, F. O., Conradi, R., & Kampenes, V. B. (2006). An
empirical study of variations in COTS-based software development
processes in the Norwegian IT industry. Empirical Software
Engineering, 11(3), 433-461.

[8] Cortellessa, V., Marinelli, F., & Potena, P. (2008). An optimization
framework for “build-or-buy” decisions in software
architecture. Computers & Operations Research, 35(10), 3090-3106.

[9] Li, J., Conradi, R., Slyngstad, O. P. N., Bunse, C., Torchiano, M., &
Morisio, M. (2006, May). An empirical study on decision making in
off-the-shelf component-based development. In Proceedings of the
28th international conference on Software engineering (pp. 897-900).
ACM.

[10] B. Regnell, M. Host, J. Natt och Dag, P. Beremark, and T. Hjelm, “An
industrial case study on distributed prioritisation in market-driven
requirements engineering for packaged software”, Requirements Eng,
2001, 6:51–62.

[11] P. Berander, and C. Wohlin, “Difference in views between
development roles in software process improvement – A quantitative
comparison”, Empirical Assessment in Software Engineering (EASE
2004).

[12] D. Firesmith, “Prioritizing requirements”, Journal Of Object
Technology, Vol. 3, No.8, September-October 2004.

[13] M. Staron, and C. Wohlin, “An industrial case study on the choice
between language customization mechanisms”, J. Münch, and M.
Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 177 – 191, 2006.
Springer-Verlag Berlin Heidelberg, 2006.

[14] S. Hatton, “Choosing the “right” prioritisation method”, 19th
Australian Conference on Software Engineering.

[15] Chatzipetrou, P., Angelis, L., Rovegard, P., & Wohlin, C. (2010,
September). Prioritization of issues and requirements by cumulative
voting: A compositional data analysis framework. In Software
Engineering and Advanced Applications (SEAA), 2010 36th
EUROMICRO Conference on (pp. 361-370). IEEE.

[16] Chatzipetrou, P., Papatheocharous, E., Angelis, L., & Andreou, A. S.
(2015). A multivariate statistical framework for the analysis of

software effort phase distribution. Information and Software
Technology, 59, 149-169.

[17] Chatzipetrou, P., Papatheocharous, E., Angelis, L., & Andreou, A. S.
(2012, September). An investigation of software effort phase
distribution using compositional data analysis. In Software
Engineering and Advanced Applications (SEAA), 2012 38th
EUROMICRO Conference on (pp. 367-375). IEEE.

[18] K. Pearson, “Mathematical contributions to the theory of evolution: on
a form of spurious correlation which may arise when indices are used
in the measurements of organs”, Proc. Roy. Soc. 60, 1897, pp.489-98.

[19] J. Aitchison, “The statistical analysis of compositional data (with
discussion)”, J. R. Statist. Soc. B, v.44,1982, pp. 139-177.

[20] Aitchison, J. “The statistical analysis of compositional data”, London,
2003, The Blackburn Press.

[21] Comas-Cufí, M., & Thió i Fernández de Henestrosa, S. (2011).
CoDaPack 2.0: a stand-alone, multi-platform compositional software.

[22] J. A. Martín-Fernández, C. Barceló-Vidal, and V. Pawlowsky-Glahn,
“Zero replacement in compositional data sets”, In H. Kiers, J. Rasson,
P. Groenen and M. Shader (Eds.), Studies in Classification, Data
Analysis, and Knowledge Organization, Proceedings of the 7th
Conference of the International Federation of Classification Societies
(IFCS'2000), pp. 155–160. Berlin, Springer-Verlag.

[23] J. A. Martín-Fernández, C. Barceló-Vidal, and V. Pawlowsky-Glahn,
“Dealing with zeros and missing values in compositional data sets
using non-parametric imputation”, Mathematical Geology, 35(3),
2003, pp.253–278.

[24] J.A. Martín-Fernández, J. Palarea-Albaladejo, and J. Gómez-García,
“Markov chain Monte Carlo method applied to rounding zeros of
compositional data: first approach”, In S. Thió-Henestrosa and J.A.
Martín-Fernández (Eds.), Proceedings of CODAWORK'03 -
Compositional Data Analysis Workshop,2003,ISBN 84-8458-111-X.
Girona.

[25] K. R., Gabriel, “The biplot-graphic display of matrices with application
to principal component analysis”, Biometrika 58,1971, pp. 453-467.

[26] K. R., Gabriel, “Biplot display of multivariate matrices for inspection
of data and diagnosis”, In: V. Barnett, Ed., Interpreting Multivariate
Data, Wiley, New York, 1981, 147-173.

[27] Aitchison, J., & Greenacre, M. (2002). Biplots of compositional
data. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 51(4), 375-392.

[28] J. Aitchison, and K.W. Ng., “Conditional compositional biplots: theory
and application”, 2nd Compositional Data Analysis Workshop
CoDaWork'05, 2005,
http://ima.udg.edu/Activitats/CoDaWork05/CD/Session1/Aitchison-
Ng.pdf

[29] Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion
variance analysis. Journal of the American Statistical
Association, 47(260), 583-621.

[30] Dunn, O. J. (1964). Multiple comparisons using rank
sums. Technometrics, 6(3), 241-252.

[31] Dunn, O. J. (1959). Estimation of the medians for dependent
variables. The Annals of Mathematical Statistics, 192-197.

205

