IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH 2018 237

Choosing Component Origins for Software
Intensive Systems: In-House, COTS, OSS
or Outsourcing?—A Case Survey

Kai Petersen

, Deepika Badampudi, Syed Muhammad Ali Shah, Krzysztof Wnuk,

Tony Gorschek, Efi Papatheocharous, Jakob Axelsson, Senior Member, IEEE,
Séverine Sentilles, lvica Crnkovic, and Antonio Cicchetti

Abstract—The choice of which software component to use influences the success of a software system. Only a few empirical studies
investigate how the choice of components is conducted in industrial practice. This is important to understand to tailor research solutions
to the needs of the industry. Existing studies focus on the choice for off-the-shelf (OTS) components. It is, however, also important to
understand the implications of the choice of alternative component sourcing options (CSOs), such as outsourcing versus the use of
OTS. Previous research has shown that the choice has major implications on the development process as well as on the ability to
evolve the system. The objective of this study is to explore how decision making took place in industry to choose among CSOs. Overall,
22 industrial cases have been studied through a case survey. The results show that the solutions specifically for CSO decisions are
deterministic and based on optimization approaches. The non-deterministic solutions proposed for architectural group decision making
appear to suit the CSO decision making in industry better. Interestingly, the final decision was perceived negatively in nine cases and
positively in seven cases, while in the remaining cases it was perceived as neither positive nor negative.

Index Terms—Decision making, in-house, COTS, OSS, outsourcing

1 INTRODUCTION

ARCHITECTURAL decision making distinguishes different
types of decisions, Kruchten [1] divided decisions into
structural and behavioral decisions. Structural decisions are
concerned with the elements and their interfaces of architec-
tural components. The choice of which components to use
in a software-intensive system is thus a structural architec-
ture decision. The choice of the right components is an
important factor for the success of a system developed with
Off-the-Shelf (OTS) components [2], which includes Com-
ponents off the shelf (COTS) and Open Source Systems
(OSS). Currently, there is a lack of empirical evidence and
understanding how practice selects OTS components, as
pointed out by Ayala et al. [2] “to improve OTS component

o K. Petersen is with the Department of Software Engineering, Blekinge
Institute of Technology, Campus Grisvik, Karlskrona 371 41, Sweden.
E-mail: kai.petersen@bth.se.

o D. Badampudi, K. Wnuk, and T. Gorschek are with the Blekinge Institute
of Technology, Campus Grisvik, Karlskrona 371 41, Sweden.

E-mail: {deepika.badampudi, krzysztof wnuk, tony.gorschek j@bth.se.

o S. Muhammad Ali Shah, E. Papatheocharous, and]. Axelsson are with
SICS Swedish ICT AB, Kista SE-164 51, Sweden.

E-mail: {syed.shah, efi.papatheocharous, jakob.axelsson|@sics.se.

o S. Sentilles and A. Cicchetti are with Milardalen University, Visteras 721
23, Sweden. E-mail: {severine.sentilles, antonio.cicchetti}@mdh.se.

o [. Crnkovic is with Chalmers, Gothenberg 412 58, Sweden.

E-mail: ivica.crnkovic@mdh.se.

Manuscript received 25 May 2016; revised 15 Feb. 2017; accepted 27 Feb.
2017. Date of publication 2 Mar. 2017; date of current version 21 Mar. 2018.
Recommended for acceptance by M. Di Penta.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2017.2677909

selection practices; the research community must understand
what the actual industrial OTS selection practices are in order to
envisage more realistic and effective solutions”. Ayala et al. [2]
and other researchers [3], [4] have provided insights of how
practice selects components. Their focus was OTS develop-
ment. However, when choosing a component another con-
sideration is the source of the component, leading to the
following question: Should the component be developed in-
house, should an OTS component be squired, or should the
development of the component be outsourced?

This question is of high relevance as different component
sourcing options (CSOs) have distinct characteristics that
have to be taken into consideration. COTS based develop-
ment implies a lack of control over evolution and the quality
of the component (cf. Torchiano and Morisio [5]). Torchiano
and Morisio also point out that the development with COTS
also has an implication on the development process, which
needs to focus on the combination and testing of the compo-
nents, as well as dealing with the evolution of the compo-
nents that is not in the control of the integrator. When
choosing outsourcing the issue of the lack of control does
not arise. Though, specific issues to outsourcing may mate-
rialize. In particular distances (cultural, temporal, and geo-
graphical) have an effect on the development process [6],
which has to be adjusted to cope with the distances [7]. In
addition, software architects are challenged in mentoring
and facilitating learning at the outsourced organization, and
have to guard the integrity of the architecture during the
learning period [8]. Given the significance of the potential
effects on the organization making a choice for a CSO, it is

0098-5589 © 2017 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1532-8223
https://orcid.org/0000-0002-1532-8223
https://orcid.org/0000-0002-1532-8223
https://orcid.org/0000-0002-1532-8223
https://orcid.org/0000-0002-1532-8223
mailto:
mailto:
mailto:
mailto:
mailto:

238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH2018

important how organizations choose between them. The
evidence of how decisions are made for CSOs is very lim-
ited with only two industrial case studies in the area [9].

The need to better understand decision making in indus-
try for OTS selection [2] and CSO selection[9] has been
highlighted. Furthermore, the need for evaluating the out-
come of the decision is important [10]. To address the above
mentioned needs we provide an analysis of 22 cases about
how decision making took place when choosing among CSOs for
adding components in industrial software-intensive systems. We
identified the CSOs considered, the stakeholders involved,
the criteria considered, and the actual decision taken. Fur-
thermore, reflections on the decision reached were obtained,
such as whether the “right” decision was reached.

We considered four CSOs: In-house developed compo-
nents, components off-the-shelf, open source components,
and outsourced development of components, which are
defined as follows:

e In-house: The component is developed within the
same company. Badampudi et al. [9] highlight that it
is still considered in-house development when the
development is distributed, as long as it takes place
within the company.

e COTS: This option stands for “components off-
the-shelf” or “commercial-off-the-shelf”, which are
already developed (pre-built) and for which the
source code is usually not available to the buyer.

e (OSS: Open source components are also pre-built, but
the source code is available. OSS components are
commonly built by a community.

e Outsource: Another company is developing the com-
ponent and is given the contract by the company
wanting to obtain the component.

The research method used was case survey [11]. The cases
were gathered in the context of the ORION project." The
results add to the limited empirical knowledge (cf. [2]) of
how component decisions have been made in industrial prac-
tice, in particular the choice between CSOs. The cases were
collected based on the researchers’ experiences in industrial
settings and based on interviews with experts from compa-
nies. Overall, 22 cases are included in this case survey.

The remainder of the paper is structured as follows.
Section 2 presents the related work. Section 3 describes the
research method used. Section 4 explains the results, followed
by their discussion (Section 5). Section 6 concludes the paper.

2 RELATED WORK

We first present the decision making problem targeted in
the paper by characterizing the alternatives for the decision
(In-house, OSS, COTS, and Outsourcing) based on the
knowledge presented in the literature. Furthermore, the dif-
ferent options are compared based on their strengths and
weaknesses. Thereafter, we characterize the decision mak-
ing for components based on the literature. We always indi-
cate which findings were theoretical or empirical.

2.1 Decision Making Problem
Component decision making takes place on different levels.
Fig. 1 depicts the different levels at which decisions are made.

1. http:/ /orion-research.se

Decision level-
Component origin selection

Inhouse Outsourcing COTS

Decision level-
Provider selection ||

- = uuw;,;-:, uum.f;-:, -

Decision level-
Component selection

Fig. 1. Decision levels when choosing components: The figure shows the
different levels of decision making, distinguishing between the CSO
choice, vendor choice, and the selection of the actual component.

On the top (strategic) level, the CSO is selected. On the pro-
vider selection level, depending on the option, either vendors,
suppliers, or communities may be chosen. Finally, on the low-
est level a concrete component is chosen. Note that we do not
imply a particular order in which the decisions are made.

To facilitate and support the choice of components, differ-
ent researchers provided insights about the different CSOs.
The selection of insights are summarized in Table 1 to charac-
terize the options companies can choose from. Given that the
CSOs have different characteristics they have different impli-
cations on the criteria governing the choice between them.

Badampudi et al. [9] synthesized the findings from the lit-
erature about the strengths and weaknesses of the CSOs in
comparison to each other, and distinguished between theoret-
ical and practical influences. A summary of their synthesis is
shown in Table 2. Both empirical data (E) as well as findings
based on theoretical reasoning (T). The synthesized evidence
is based on a limited set of studies with varying scientific
rigor and relevance (cf. [9]). Only nine empirical studies were
identified by Badampudi et al. that compared CSOs.

In the case of the study by [3] one of the interviewees
pointed out that “we do not want our developers start writing
programs from scratch. At least in the Java world we find very often
that the highest quality libraries are the ones that are open source
and not the commercial”. In this case, the CSO has already been
chosen (OSS). However, in this case survey study we explore
decisions where the CSO choice had to be made, which is of
interest to practice and research given the distinguishing
characteristics of the CSOs (see Tables 1 and 2).

2.2 Characterizing Decision Making

As mentioned earlier the choice of a component is an archi-
tectural decision, specifically a structural decision according
to Kruchten [1]. Thus, we first review the literature on archi-
tectural decision making to elicit important characteristics
of the decisions made. Thereafter, we separately present the
literature on the different decision levels presented in Fig. 1.

2.2.1 Architectural Decision Making

Theoretical. Kruchten [1] defined an ontology for architecture
decision making. Kruchten divides architectural decisions
into different categories:

http://orion-research.se

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR...

TABLE 1
CSO Characteristics: The Table Shows the Distinguishing Characteristics
Between the CSO Options as They Were Presented in the Literature

239

CSO

Characteristics cited from papers

Source

In-house

Control over features and evolution of the product
Control over the development process and projects initiated
Awareness and knowledge of the system lies with the developing organization

[12]
(12]
[8]

COTS

Lack of control (evolution, quality, functionality) as components are black-boxes
COTS development influences the development process
COTS are mostly used in real-time, embedded and distributed computing

[5]
[5]
(13]

0SS

Motivation for choosing OSS: higher quality, shorter time to market, and cost reduction
Most important criterion for choosing between different OSS is the vitality of the community,

[3]
[3]

functionality, standard compliance, and ease of integration
OSS components are used without modification

Cost of locating and debugging defects in OTS-based systems is substantial

[4]
[4]

OTS (COTS+0SS)

Issues and challenges in estimating integration effort and debugging
Cost estimation factors are: time to understand the OTS, OTS inflexibility, and dealing with

(14]
[4]

OTS evolution and corresponding updates needed by integrators.

OTS rarely affect quality negatively (reliability, performance, security were problematic if

problems occurred)

[4]

In the case of the characterization of the CSOs all findings are empirical.

Structural decisions. These decisions are concerned
which elements (such as components) to include in an
architecture, as well as the design of their interfaces.
Also, ban-decisions of what should not be included
can be specified here. In addition, the behavior of the
components is specified, which describes the interac-
tion between different architectural elements.

Property decisions: These decisions are concerned with
how to design the architecture (e.g., architectural
style) in order to achieve certain properties (e.g.,

performance). As relevant properties Kruchten men-
tions usability, security, politics, cost and risk.
Executive decisions: These decisions are concerned
with contextual factors, such as the technology or the
processes used.

To support the documentation of architectural decisions
van Heesch [31] proposed a framework. Elements to be
documented were the state of the decision, the decision
making group, the problem specifying why the decision
was made, the decision taken, the alternatives considered,

TABLE 2
Synthesis of CSO Comparisons: The Table Shows the Synthesized Evidence (cf. Badampudi et al. [9]) of the
Performance of CSOs in Comparison to Each Other, and States Whether They Are Empirical (E) or Theoretical (T)

Criterion group Impacted criterion COTS OSss In-house
E T E T E T

Time Time to test and integrate [15] - +

Time to market [16] -
Cost Cost of components [16], [17], [18]

Total cost of ownership [19] = =

Cost of replacing components [16], [20] - +

Maintenance cost [21], [22], [23] - - +
Effort Selection and integration effort [16], [22] - -

Development effort [16] + -
Quality Quality in general [16], [17], [20], [24], [25], [26] - + -
Market trend Component evolution [16], [19], [21], [23], [27] + - -
Source code Access and use of source code [16], [18], [19], [22], [28], [29], [30] - + +,-

Source code documentation [17], [27] - +,-
Tehnical support Vendor response time [16], [20], [29] + - +

Support availability [19], [26] - +

Code customization [24] - - +

Changes in requirements [21], [26], [27], [28] + - -
License License fee [16], [18] +

License obliations [17], [19], [20], [30]

If a CSO affects a criterion positively in comparison to others, this is indicated by a "+

u_,

o,

’

o,

if it is negatively affected this is indicated by a “-”; if no difference is

observed this is indicated by a “="; If both, positive and negative effect is observed this is indicated by a "+,-".

240 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH2018

system concerns, and the history of he decision. An interest-
ing aspect mentioned is that decisions are often not taken in
isolation, but rather in groups, Hence, van Heesch proposes
to also capture links to all related decisions. According to
Heesch typical stakeholders in the decision making are
architects, reviewers, managers, customers, requirements
engineers, new project members, and domain experts.

Given that architectural decisions are commonly pre-
pared and made by a group of people, group decision mak-
ing (GDM) plays an important role. The literature suggests a
variety of approaches to support GDM. Malavolta et al. [32]
created a meta-model allowing to capture the different view-
points of stakeholders. The meta-model captures rationales,
issues, concerns and criteria of the decision and is linked to a
group decision model. The group decision model captures
and tracks the decisions that are related to a group of stake-
holders. Features for conflict resolution strategies and traces
to other relevant artifacts are also captured. Similarly, Nowal
and Pautasso [33] provided an approach for the systematic
recording of argumentation viewpoints. Argumentation
viewpoints should raise situational awareness of teams and
hence provide a means to build a consensus. To record an
argumentation viewpoint design issues, alternatives and the
stakeholder positions in relation to the alternatives are cap-
tured. Nowal and Pautasso developed a tool supporting
brainstorming and the evaluation of design elements. A Soft-
ware architecture warehouse facilitates the tracking and
sharing of decisions by a team. Zimmermann et al. [34] high-
light that a common problem of architecture decision making
is the lack of a documented rationale. Zimmerman et al.
emphasize the identification of reusable decisions, and hence
highlight the importance of capturing the information about
the decision. They also point out that decisions are not made
in isolation from other decisions. They propose a conceptual
framework for proactive decision identification, collabora-
tion and enforcement. The framework provides a wide range
of features, such as proposals for templates and the identifi-
cation of reusable decisions, process support for identifying,
making and enforcement of the decisions, pushing to-do-
lists to the architectural teams, and providing support tech-
niques to reflect on the decisions. The feature of decision
enforcement allows to directly inject decisions into the code.
The proposal has been proven to be practical in a service-
oriented architecture (SOA)-based application.

Empirical. Capilla et al. [35] describe how to capture
architectural design decisions and provide tool (Architec-
ture Design Decision Support System) support to facilitate
knowledge transfer and provide deeper insights into the
rationales behind architectural decisions. They conducted a
case study with students using the tool and captured the
effort of the architecting activities and the effort spent on
the decision. The usability and ease of use was positively
assessed. Reasoning activities for capturing the design deci-
sions required 47 percent of the overall effort spent. To sup-
port reasoning activities Razavian et al. [36] introduced
design reflections in student groups by asking reflective
questions to the students. This led to backtracking and
rethinking design decisions. Overall, external triggered
reflections improved the quality of discourse and had a pos-
itive effect on reflections taking place within the groups.

Tofan et al. [37] evaluated a decision making process
(GADGED) based on the repertory grid approach [38] to

determine whether it increases the consensus in GDM for
architectures. The repertory grid approach systematically
elicits the decision alternatives, constructs by which they
are compared and the ratings for each alternative in relation
to the constructs. A statistical analysis is thereafter con-
ducted [38]. The findings showed that GADGED was useful
for group decision making, in particular for inexperienced
architects.

To determine whether existing GDM approaches provide
sufficient supports to groups wanting to make architectural
decisions Rekha and Muccini [39] propose an evaluation
framework. The framework checks the presence of features
to facilitate learning, problem analysis, the ability to rate
alternatives, as well as conflict resolution, to name a few.
Rekha and Muccini applied the framework to existing GDM
approaches and found that they do not fully support GDM
in their current form. Examples of features missing are the
ability for stakeholders to explicitly indicate their preferen-
ces, as well as conflict resolution mechanisms and rules
determining how the preferences of stakeholders should be
taken into account. Groher and Weinreich [10] asked stu-
dent groups with significant practical experience and GDM
knowledge to individually develop GDM tools. Later, the
tools were compared against the framework proposed by
Rekha and Muccini [39]. They found that the tools mostly
fulfilled the features. New interesting ideas emerged, in par-
ticular the possibility to provide features for the review of
decisions after they have been made and communication
means between stakeholders inside the tool.

As architectures evolve continuously decision makers
have to conduct assessments on a continuous basis. For
each decision a trade-off has to be made between different
properties of the architecture, such as cost, performance
and reliability. Cortellessa et al. [40] proposed a model-
based framework utilizing an optimization model with the
aim of minimizing cost while thresholds are set with regard
to reliability and performance. Initial evaluations showed
that the framework performed better in decision making
compared to humans, which provided indications of the
usefulness of optimization models in decision making.

2.2.2 Choosing CSOs

Theoretical. The solutions identified in the literature by
Badampudi et al. (cf. [9]) only aiming at deciding between
CSOs were solution proposals without a rigorous empirical
component. To decide between in-house and COTS develop-
ment optimization models have been proposed [20], [23],
[41], [42], [43]. As an example, an optimization model may be
used to make a choice of components to maximize reliability,
while minimizing delivery time. Different constraints can
be defined, such as costs. For making a trade-off between
in-house development and outsourcing Kramer and
Eschweiler [44] propose to utilize clustering to group compo-
nents and utilize requirements dependencies and priorities
to make the choice. Kramer et al. [45] propose utilizes out-
sourcing potential, knowledge specificity, and interdepen-
dencies to make a decision utilizing decision tables.

2.2.3 Choosing Vendors

Empirical. The selection of vendors and suppliers has been
considered in several studies. A secondary study has been

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR... 241

Component Decision making Development
perspective function lifecycle
.
Architecture
Integrator - Development
()
Customer est
Decision Support
gmak'”g

Fig. 2. Stakeholder perspectives: The figure shows the different stake-
holder perspectives derived from the literature based on which a role
can be described. For example, a software tester initiating the decision
on integrator side.

presented by [46], which identifies the success factors in the
selection of offshore outsourcing vendors. In total 22 factors
were identified from the primary studies. Cost-saving, skilled
human resource, appropriate infrastructure and quality of
products were among the factors that were identified in more
than 50 percent of the primary studies. Studies [22], [47] pres-
ent findings related to vendor selection and community selec-
tion, respectively. The relationship between component
integrator and external vendor (COTS vendor and OSS com-
munity) is considered important to minimize the time and
effort on technical, legal and business negotiations [22]. In
addition, the collaboration between the OSS developers and
actives users is considered important to maintain good com-
munication and relationship with the OSS community.

2.2.4 Choosing OTS Components

Empirical. Vale et al. [13] conducted an extensive systematic
mapping study on component-based software engineering
(CBSE) to find open issues and research trends. With regard
to component selection they found that COTS are commonly
selected for embedded, real-time and distributed systems.
Looking at the field of CBSE limited evaluations and a lack of
empirical knowledge have been identified. Similarly Ayala
etal. [2] found limited evidence in relation to selection practi-
ces in practice. To address this gap multiple researchers con-
ducted studies on how OTS components are chosen.

Ayala et al. [2] found a gap in the processes proposed in
the literature versus what has been used in practice. For
example, component repositories are proposed, but not
often used in practice.

Ayala et al. [2] and Gerea [3] found that common steps in
the component selection process are identification, evalua-
tion, learning and knowledge management, use of the com-
ponent, and choosing. Gerea also found that the process of
selection process is impacted by the component size. Larger
components were selected earlier in the development life-
cycle. The process used for selection is rarely formal and
rather ad-hoc in nature, which has been reported by multi-
ple authors (cf. [2], [4], [5]). For COTS selection Li et al. [4]
found that companies use prototyping to learn about COTS.

In the case of OSS the stakeholders involved in the pro-
cess are the owners of the OSS, developers (distinguishing
between core and general developer), system testers, user
support as well as problem reporters and users [48]. The

initiation of the decision for OSS as well as the preparation
and investigation is mostly done by software developers.
The leaders (such as the CEO) then take the decision and
have the final word [3]. End-users are also involved in the
decision making [3]. To systematize the stakeholder roles
three perspectives can be identified, the decision function
(initiation, decision preparation, and decision making) [3],
the relationship to the component (vendor of the compo-
nent, integrators, and customers/end-users) [5], as well as
the roles in the development life-cycle (such as developers
and testers) [48]. The perspectives and corresponding roles
are summarized in Fig. 2.

Gerea et al. [3] found that the most Important criteria for
decision making for OSS are the compliance to standards
and the matching of the functionality provided by the com-
ponent to the needs. Another important criterion for OSS
component selection is the vitality of the OSS community.
Architectural considerations are also of great importance [5].
In addition to the criteria, risk factors need to be considered
during component selection, integration and maintenance,
which were identified by Morandini et al. [49] and Li et al.
[14]. The risk factors were related to ill-estimation of selec-
tion, integration and maintenance effort, wrong component
selection, component integration and maintenance failure.
Furthermore, legal risk with respect to intellectual property
and license were identified. Risk reduction activities were to
invest in learning the relevant components and integrating
components that are unfamiliar first [14]. In addition exten-
sive testing of the components is important [14].

The best practices for COTS selection in literature and in
industry were identified by Rikard et al. [50] and three
COTS selection methods (Comparative evaluation process,
COTS-based requirements engineering and framework of
COTS selection) were compared by Wanyama and Far [51].

3 MEeTHOD

We first present the research questions, and thereafter pro-
vide details on the case survey method and how it has been
used in this study. We utilized the guidelines by Larsson
[11] during the design of the research.

3.1 Research Questions

The first research question was concerned with how CSOs
were selected in the context of software-intensive system
development. In order to determine how the decisions were
made, several sub-questions needed to be answered:

e RQ1: How are CSOs chosen?

- RQ1.1: Which CSOs (a) were considered and (b)
which CSOs among those considered were chosen?
The first sub-question (a) provides an insight of
the decision making problem formulated by the
companies. Knowing the combinations fre-
quently considered by companies helps to guide
future research, in particular it shows which
CSOs should be compared empirically so that
companies may use this information as input to
their decision making process. In the second sub-
question (b) we investigate whether trends are
visible of one CSO being preferred over another,
which provides early indications of preferences

242 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH2018

between CSOs with respect to their advantages
and disadvantages.

- RQ1.2: Which stakeholders were involved in the deci-
sion process? Whether a decision is taken individ-
ually or in a group is an important aspect when
designing decision support for CSOs. Also,
understanding the different roles involved in the
stages of decision making provides practitioners
with the possibility to reflect on whether the
identified roles are also relevant in their decision
scenarios.

- RQ1.3: Which criteria (a) were considered for making
the decision and (b) which criteria initially considered
ended up as significant for the final decision? Similar
to RQ1.1, the criteria show which variables need
to be studied when comparing CSOs empirically.
Criteria considered in the preparation for the
decision making, though not considered as rele-
vant in the final decision, point to a potential for
improvements in decision making processes.
Thus, it is of interest which criteria are actually
those that were essential in the final decision.

- RQ1.4: Which decision making approach/model was
used? In the literature several methods are pro-
posed (such as optimization models). Under-
standing the methods used in practice allows to
determine whether the solutions proposed in
research found their way into practice, and
which methods used in practice need to be inte-
grated into decision support systems.

The second research question aims at understanding the
outcome of the decision making process:

e RQ2: What were the decision outcomes of the CSO selec-
tion process?

- RQ2.1: What was the effort invested in the decision
making process? When looking at solutions in soft-
ware engineering (in this case how CSOs are cho-
sen) the cost factor has to be considered. Thus,
we investigated the estimated effort spent on
decision making.

- RQ2.2: Were the CSOs chosen considered the “right”
choice retrospectively? In this question we reflect
on the selected options for making a decision
from the retrospective point of view: finding that
decisions are mostly positive indicates a success
of CSO decision practices. Negative results on
the other hand point to the need for decision sup-
port and adjustments in the practices.

3.2 The Case Survey Method

We provide an introduction to the case survey method as it
has not been widely applied in the software engineering
context.

Studies often report only a small number of cases in a sin-
gle publication. On the other hand, surveys focus on a large
number of data points and are mostly quantitative. The case
survey method is a compromise of the two approaches [11],
as Larsson points out “it can overcome the problem of generaliz-
ing from a single case study and at the same time provide more
in-depth analysis of complex organizational phenomena than

questionnaire surveys” (cf. [11], p. 1566) . According to Larsson
there are multiple benefits of using the case survey method.
As cases are synthesized the case survey adds value to previ-
ous individual cases, and the richness of case studies can be
incorporated to draw conclusions in the quantitative synthe-
sis. A data extraction scheme is used for capturing the data
from the cases, hence it is possible to easily extend the case
survey by adding further cases. Overall, Larsson concludes
that the case survey is a means to bridge the gap between
positivist approaches (such as surveys) and humanistic/
interpretivist approaches (such as case studies).

The process of the case survey method comprises of four
different steps:

1) Select the cases of interest.

2) Design the data extraction form for elicitation

3) Conduct the coding

4) Use statistical approaches to analyze the coding

The process steps as executed in this study are outlined
in Sections 3.2.1,3.2.2,3.2.3, and 3.2 4.

3.2.1 Step 1: Select the Cases of Interest

The focus of this paper is on choosing CSOs, such as choos-
ing between in-house development versus open source for
software-intensive systems. The components chosen should
be utilized as parts of the system-intensive system devel-
oped. For example, if an automotive component is devel-
oped, and the choice is where to obtain the integrated
development environment (IDE), this case would not be
included in the study. On the other hand, if the focus of the
software development is the IDE itself, then this case would
be included. As pointed out by van Heesch et al. [31] archi-
tectural decisions are often not independent and thus are
bundled into a single decision problem. This was also the
case in this case survey.

The inclusion criteria thus can be summarised as follows:

e The case provides information of how the decision
making between at least two CSOs has been taking
place where the component should become part of a
software-intensive system. For example, a database
component becomes part of the system, while the
development environment does not.

e The system for which the CSO decision is made is
industrial (can involve academics if they are sup-
porting the industry).

e Cases should at least be explicit about the CSOs con-
sidered, the persons involved in the decision making
process, the CSO chosen, the methods used in deci-
sion making, and the criteria used when preparing
and making the decision.

e Cases were elicited from two sources, namely
researchers with industry experience of the ORION
project reporting cases from industrial systems
where they have been involved in the decision, and
interviews with industry practitioners outside of the
project.

The target population are cases of making decisions for
CSOs for software-intensive systems. All cases are based on
decisions for industrial systems. The sampling strategy was
convenience sampling, i.e., we reported cases that we could
access through the ORION project and industrial contacts.

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR... 243

TABLE 3
Sources for Cases: All Cases Focus on
Decisions for Industrial Systems

Source Number of cases Case IDs

Cases reported 11 1,2,3,4,5,6,7,8,9,16,19
by ORION

researchers

Interviews 11
with industry
stakeholders

(outside ORION)

10,11,12,13, 14, 15,17, 18, 20, 21, 22

Own experiences refer to researchers who in the role of industry practitioners
have been involved in CSO decision making (11 cases). In addition interviews
were conducted with industry practitioners (11 cases).

In order to obtain the data, two approaches were used,
namely members of the ORION project, and interviews
with industry practitioners outside of the project (see
Table 3). Members of the ORION project reported the cases
using the data extraction scheme (Table 5). As the research-
ers had access to different networks a diverse sample could
be obtained focusing on different domains and including
experience from industrial and academic environments.
The experiences of the research participants originate from
knowledge obtained about relevant cases during former
industrial projects where the subjects provided support as
researchers (three cases), the work done in an own company
or work (three cases), as well as consultancy work (five
cases). The interviewees were identified through the
researchers’ networks. All decision cases presented were
done for real-world industrial systems. The introduced data
extraction scheme (Section 3.2.2) served as the interview
guide. The interviews lasted for 45 minutes to 1 hour.

Table 4 provides the years of industry experience of the
subjects in this study. Overall, the subjects have substantial
experience in the software industry.

3.2.2 Step 2: Design Data Extraction Scheme for Data
Elicitation

There is a risk that the participants in the study eliciting the
cases misinterpret the items in Table 5. Thus, the data
extraction scheme was reviewed by all ORION project par-
ticipants. The quality of the form and its understandability
were essential in the extraction process, and was important
for the validity of the results. An initial form was designed
by the first author of the study. The co-authors reviewed the
form and submitted change requests to the first author,
each reviewer could see the comments already submitted.
Each review was considered and a rejoinder was written to
keep track of changes, including a response motivating the
change, and an action specifying what was changed. After
no further comments had been received, the form was con-
sidered of sufficient quality to start the data extraction.

The initial version of the data extraction form was
defined based on the literature on decision making for
CSOs (see related work), and ongoing work to create a tax-
onomy to describe the decision making for choosing among
CSOs, the so-called GRADE taxonomy [52]. The taxonomy
defines criteria, roles, decision making methods, environ-
ments, and decision making goals. We also explicitly asked
the practitioners to expand on context and decision criteria
relevant to the decision if they were not captured yet. Thus,

TABLE 4
Experience of Subjects: The Table Shows
the Experience of the Subjects That Were
the Sources of the Cases

Measure Experience (in years)
Average 14.44

Median 13
Minimum 4
Maximum 13

We state the average, median, minimum, and maxi-
mum experience in years.

all factors presented here were the ones that the practi-
tioners were aware of, or raised as essential.

3.2.3 Step 3: Conduct the Coding

Not all information in the form needed to be coded, and we
only coded information directly linked to the research ques-
tions. As can be seen in Table 5 many items were either inte-
ger values, enumerations, or boolean (present or not present
in the case). That is, only items 13, 14, 15, 27, 28, 29, 33, and
34 in Table 5 were coded. These concern, among others,
decision outcomes, lessons learned, or decision criteria not
captured in the initial version of the extraction form. The
initial coding was conducted by the first author. An open
coding strategy was followed. For example, items 12-14 in
the data extraction scheme (Table 5) referring to the stake-
holders can be found in Tables 9 and 10. Also, through the
coding a terminology control was performed so that we con-
sistently refer to roles and quality attributes. For example,
the subjects provided the criteria “API fit, compatibility with
minimal adaptation” and “Very important that the solution is
compatible with the other component in the system”, which were
grouped under “Product-compatibility”. The coding was
reviewed by two co-authors of the paper, Deepika Badam-
pudi and Syed Muhammad Ali Shah. The coding was done
based on notes taken during the interviews as well as the
information filled in by the ORION members.

3.2.4 Step 4: Analysis

Yin and Heald [53] report the results of the case survey in
terms of vote counting. A similar approach is utilized in this
case survey (e.g., the number of cases considering a CSO,
the number of cases considering different criteria, etc.).

Odds ratio is used as a statistical analysis method to
quantify how strongly the presence or absence of property
A is associated with the presence or absence of property B
in a given population. In this case, the association between
the presence or absence of a decision criterion and the pres-
ence or absence of a decision option is measured through
odds ratio (see RQs 1.3 and 2.3). To compute odds ratio we
determine the following variables:

a = Number of cases where the criterion is considered and
the decision option is chosen

b = Number of cases where the criterion is considered and
the decision option is not chosen

¢ = Number of cases where the criterion is not considered
and the decision option is chosen

d = Number of cases where the criterion is not considered

and the decision option is not chosen

244 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH 2018
TABLE 5
Extraction Scheme: The Extraction Scheme Shows the Category of Extraction ltems, the Name
of the Item, Its Description, Value Domain (Data Type) and Links to Research Questions

Item ID Category Ttem Description Type Research question Comments

1 Meta-information ~ Code Unique identifier for case Integer X X

2 Meta-information ~ Author ORION research participant providing the case String X X

3 Meta-information Company Case company String X X

4 Meta-information Source Origin of the case String X X

5 Meta-information Decision scenario A short summary of the decision case String X X

6 Context Domain Domain in which the decision was taken String X X
(e.g., automotive, avionics)

7 Context Application type Type of the application developed String X X
(e.g., embedded, information system)

8 Context Company size Size of the whole company Integer X X

9 Context Development unit size Size of the development unit where the Integer X X
component was used

10 Context Development methodology Software Development Methodology used String X X

11 Context Other Other relevant context factors to consider String X X

12 CSOs CSOs considered in the decision CSOs = In-house, COTS, OSS, Outsource Enumeration RQ1.1 X

13 Stakeholders Decision initiator Stakeholders involved in the initiation of the String RQ1.2 requires coding
decision (identification of the need to make a
decision and formulation of the decision problem)

14 Stakeholders Stakeholders in decision Stakeholders preparing the information and reflections String RQ1.2 requires coding

preparation needed to make a decision

15 Stakeholders Decision makers Stakeholders taking the decision String RQ1.2 requires coding

16 Decision criteria Performance Response time, timing behaviour of the system Boolean RQ1.3 X

17 Decision criteria Maintainability Ease of updating the system (corrective, enhancements) Boolean RQ1.3 X

18 Decision criteria Reliability Reliability of the system Boolean RQ1.3 X

19 Decision criteria Security Security of the system Boolean RQ1.3 X

20 Decision criteria Time Time (duration) to develop the system Boolean RQ1.3 X

21 Decision criteria Cost Cost to develop the system Boolean RQ1.3 X

22 Decision criteria Market and contract Information about the market (mass market or Boolean RQ1.3 X
bespoke development)

23 Decision criteria Access and control Ability to access the code and control the evolution Boolean RQ1.3 X
of the component

24 Decision criteria Component usage in the system Ease of use when using the component in the system Boolean RQ1.3 X

25 Decision criteria Component history Evolution of the component in terms of maturity and Boolean RQ1.3 X
change history

26 Decision criteria Certification Certification of the component, certification of the Boolean RQ1.3 X
company offering a component

27 Decision criteria Other Other criteria not mentioned String RQ1.3 requires coding

28 Decision method Decision model Method used to make the decision String RQ1.4 requires coding

29 Decision method Property model Method used to estimate the impact of the decision String RQ1.4 requires coding

30 Decision results Decision outcome CSOs chosen Enumeration RQ2.1 X

31 Decision results Decision preparation effort Effort in preparing the decision (estimated) Integer RQ2.2 X

32 Decision results Decision making effort Effort in making the decision (estimated) Integer RQ2.2 X

33 Decision evaluation Evaluation of the decision and the Important criteria of the decision and reflections on String RQ2.3/RQ2.4 requires coding

decision impact the success/failure
34 Other information ~ Noteworthy comments Remarks considered important by the person String X requires coding

extracting the case

Furthermore, we indicate where coding of the information was provided. The extraction scheme was used as the guide for interview.

The OR is thereafter calculated as

OR =%°

a/c axd

b/d bxc’

e OR >1 indicates that the criterion is associated with
higher odds of the decision option being chosen.

(1) *

OR <1 indicates that the criterion is associated with

lower odds of the decision option being chosen.

The confidence interval (cf. [54]) for OR values is calculated as

Upper95%CI = e A [In(OR) 4+ 1.961/1/a + 1/b+1/c + 1/d]
)

Lower95%CI = e A [In(OR) — 1.96y/1/a + 1/b + 1/c + 1/d).
3)

The OR values are interpreted as follows:

e OR =1 The criterion does not affect odds of decision
option being chosen.

The values of confidence interval are considered to deter-
mine if the results are statistically significant. If the range of
confidence intervals include the value 1 then the result is
determined as not statistically significant, which is the case
for the included cases (see Table 13). Power analysis is a sta-
tistical test to determine the sample size needed to detect an
effect with a given degree of confidence. It is based on statis-
tical assumptions and data characteristics. In particular, the
characteristic that we would have to know is the relative
precision implying skewness of the distribution of the odds
ratio value in order to do a power analysis. However, we do
not have historical data to specify the desired value with
confidence given that our study is of exploratory nature.

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR... 245

TABLE 6
Overview of the Cases: The Table Shows Contextual Information About the Cases

CaseID Company Size Domain Application type Development methodology
Size development
unit
Case1 100.000 5.000 Automotive Embedded systems Iterative development, Lean manufacturing
Case2 1.200 350 Utilities Embedded + Software + Apps Agile SCRUM variant
Case3 40 32 Human resource Software Hybrid Plan driven, Agile
management
Case4 21 20 Trade, Security, Software, Hardware, apps Hybrid Plan driven, Agile
Consumer
Case5 500 6 Financial Software + Hardware (servers) Hybrid Plan driven, Agile
Case6 17.000 1.300 Surveillance/Security ~ Software + Hardware Plan driven, iterative
Case7 NA NA Telecommunication Embedded system NA
Case8 NA NA Automotive Embedded control systems Iterative, informal process
Case9 100.000 50 Automotive Interactive tool for calibration N/A
Case 10 100.000 4.000 Automotive Embedded software Iterative development, time-boxed
architecture deliveries, incremental
Case 11 100.00 4.000 Automotive Embedded system architecture Waterfall
Case 12 100.00 4.000 Automotive Embedded system architecture Waterfall
Case 13 20 4 Defense Search engine Agile
Case 14 20 3 Marketing & Analytics tool Waterfall
Advertising
Case 15 14.000 180 Defense Mission critical Streamlined development, Hybrid process using
the most appropriate development methods
and techniques.
Case 16 140 000 300 Process automationand Embedded control system Waterfall with safety certification and extensive
roboticsfor several changeimpact analysis process.
industries
Case 17 100.000 30 Automotive Embedded control system Each of the department uses its own
development methodology but there is a global
process (V model). The components used SCRUM
Case 18 10.000 10 Automotive Control-dominant software Agile
Case 19 N.A. 1.000 Telecom Information system Hybrid Plan driven, Agile
(large scale)
Case 20 100.000 100 Telecom Charging system Scrum
Case 21 100.000 5 Telecom Embedded system Scrum
Case22 3 3 Telecom NA NA

The size refers to the overall (including different development organizations), while the size of the development unit refers to the organization where the selection
of the component took place. The development units were located in Sweden. Furthermore, we characterized the domain, the application type, and the development

methodology used in the development unit.

Ayala et al. [2] also highlighted this, in particular sourcing/
component decision practices in industry are not widely
investigated. Hence, at the exploratory stage we do not
know these characteristics to the degree to make a reliable
power analysis. Miller [55] points towards qualitative direc-
tion as an alternative to statistical significance testing. Thus,
in our results we utilize the statistical analysis from odds
ratio to triangulate the findings with the responses from the
subjects of this study (see Section 4.2.3).

4 RESULTS

4.1 Overview of Cases

Table 6 provides an overview of the 22 cases included in the
case survey. The cases were characterized by the size of the
company, the development unit where the component
should be used. Furthermore, the domain, application type,
and development methodology were specified. Half of the
cases were in the context of the automotive domain (11 of
22), while other contexts have been considered as well.
Given the proportionally high number of automotive cases,
the most frequently reported application type was embed-
ded systems. A variety of software development methodol-
ogies has been used, including agile and plan-driven

processes. Furthermore, multiple cases reported hybrid pro-
cesses combining agile and plan-driven concepts. With
regard to sizes a range of different company sizes as well as
sizes of the development units concerned have been
reported. Overall, cases with varying sizes, domains, and
development methodologies have been obtained.

4.2 RQ1:How Are CSOs Chosen?
In the context of RQ1 we investigated the CSOs considered,

the involved stakeholders, the decision criteria, and the
decision model used.

4.2.1 RQ1.1: Which CSOs (a) Were Considered and

(b) Which CSOs Among Those Considered Were
Chosen?

The decision making problem constitutes the choice of CSOs
for a software intensive system, namely in-house, COTS, OSS
and Outsource. In addition the practitioners considered serv-
ices as a separate option in their decision making. Looking at
the definition of services they were considered in the category
of COTS by Ayala et al. [2]. More specifically, they are defined
as a way of delivering functionality: “Software-intensive serv-
ices, often delivered as cloud or internet services, can also be

246 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 3,

TABLE 7
Decision Making Options Considered: The Table
Shows the Frequency of Options Considered

CSO Frequency of consideration %

In-house 17 32.08
COTS 14 26.42
Outsource 11 20.75
0SS 6 11.32
Services 5 9.43

Total 53 100.00

products from all industries like financial, insurance, gaming, social
software, or personal services based on software” (cf. [56]). In this
paper our aim was to present the decision making problem
as it was formulated by the practitioners, hence services has
been presented as a separate option. It is interesting to
observe that what is conceptually incorrect (i.e., including
services as a CSO) was not a factor for the practitioners to
exclude them as an option in their decision making.

Table 7 shows the most frequently considered CSOs. As
is evident from the table the most frequently considered
CSOs were In-house, COTS and Outsource. This informa-
tion is important to, for example, decide which options
have to be well supported by evidence with regard to bene-
fits and limitations of one alternative over another (e.g.,
COTS in comparison to In-house). Only in five cases the
practitioners considered services as an option.

To understand which CSOs are traded off against each
other we analyzed the frequency of combinations for compar-
isons between the alternatives, which is shown in Table 8. The
most frequent trade-offs were between In-house versus
COTS, In-house versus Outsource, and COTS versus OSS. It
is no surprise that the most frequent comparisons comprise
of the CSOs being most frequently considered (see Table 7).

The number of options considered has an implication on
decision support methods, i.e.,, one needs to determine
whether solutions can support a trade-off between two or
more alternatives. The number of options considered in the
cases are thus illustrated in Fig. 3. The figure shows that it is
common to consider two options, while there are still a
number of cases that involve three options and more.

Fig. 4 shows the options considered for each case as well
as the options chosen. The elements in the figure are to be
interpreted as follows:

e (CSOs that were considered, but not chosen, are rep-
resented as black circles. For example, in case 12, In-
house has been considered, but it was not chosen.

TABLE 8
Decision Making Option Trade-Offs: The Table Shows
the Frequency of the Considerations of Pairs for
the CSO Options in the Cases

In-house COTS OSS Services Outsource
In-house 9 1 4 11
COTS 6 3 4
0SS 1 1
Services 2

Outsource

MARCH 2018

Mean =2.41
Std. Dev. =.666
=22

Frequency

0 T T T
2 3 4

Number of options considered

Fig. 3. Number of options considered: The figure shows a histogram of
the number of options considered for the set of cases.

e Decisions that deviated from the recommended
choice based on the investigation during the decision
preparation are represented as black diamonds. For

Decision Options

In-house COoTS 0SS Outsource

*

Services

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10
Case 11
Case 12
Case 13
Case 14
Case 15
Case 16

Case 17
Case 18

Case 19
Case 20
Case 21
Case 22

® 0
o

000
o
® 0O

00 & CO0 00000000
o (o]0
o ¢

000000000 0000
| J
00000

Considered: 17 14
Chosen: 7 7

@ Decision option
(o] Chosen option

‘ Chosen, but not following recommendation
from decision preparation

Fig. 4. Decision outcomes: The figure shows the decision options con-
sidered and chosen for each case. In addition, we illustrate how often
each option has been considered, and how often it has been chosen.

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR... 247

TABLE 9
Decision Making Roles: The Table Shows the Different Decision Making Roles Involved

Roles Initiation Preparation Deciding

Abs % Abs % Abs %
Software management 15 62.5 32 43.24 21 80.77
Software construction/dev. 7 29.17 9 12.16 4 15.38
External support 1 4.167 8 10.81 0 0.00
Software test/quality control 1 4.167 2 2.70 0 0.00
Customers 0 0.00 3 4.05 0 0.00
Expert group (group of roles, unspecified) 0 0.00 5 6.75 0 0.00
Legal 0 0.00 2 2.70 1 3.84
Sales (business/customer relations) 0 0.00 4 5.40 0 0.00
Software architecture/ design 0 0.00 6 8.10 0 0.00
Sub-contractors (providers of components) 0 0.00 3 4.0554 0 0.00
Total 24 100.00 74 100.00 26 100.00

It distinguishes between decision initiation, preparation, and decision making. The absolute values and percentages are stated.

example, in Case 1 the recommendation was to go
with COTS based on the decision preparation, but
then the choice made was Outsource, which was
also a CSO considered from the beginning in the
decision making process.

e (CSOs that were considered, chosen, and did not
deviate from the recommended choice, are illus-
trated as circles with a white diamond inside.

In 7 of 22 cases in-house development has been chosen
among the alternatives. Also in 7 cases components off-the-
shelf was the CSO chosen. In-house development has been
considered in 17 out of 22 cases. Thus, the reflection of
developing internally, or obtaining a component externally
from different sources seems to be a key decision in practice.
In a few cases only, the recommended alternative has not
been chosen, which was true for Cases 1 and 14.

For case 1, the decision was prepared on a technical level
considering the wide range of factors (performance, reliabil-
ity, etc.). The technical people in preparation then passed
their recommendation to the decision maker on business
level, who decided to ignore the findings and make a politi-
cal decision. In conclusion, for this case politics and the man-
agement of relationships overruled technical considerations.

For case 14, a social media analytics platform required a
component for sentiment analysis from Facebook and Twit-
ter. In-house development was recommended and a similar
library was already developed that could have been used,
but a web-service has been obtained also. In the end, quality
issues were observed for the web service (textAnalytics)
while also an alternative service (Mashape) was considered.
Overall, this led the company to initiate a new decision,
namely replace the textAlytics service with Mashape, or to
utilize the in-house developed component.

As mentioned earlier decisions are often combined [31].
In the case survey, the cases where more than one CSO (see
Fig. 4) has been chosen represent combined decisions. For
example, in Case 5 a system for access control, back-end
trade, and reporting for a large financial system was devel-
oped with high demands on accuracy and performance.
This required three components, which were all handled as
one decision problem to solve account, trading, and report-
ing. When we consider this as a decision problem, the com-
pany considered build or service for the first component,

build or outsource for the second component, and build or
get a COTS for the third component.

4.2.2 RQ1.2: Which Stakeholders Were Involved in the
Decision Process?

We distinguish three groups of stakeholders in the decision
making. According to Strydom [57] the key stakeholders in
decision making are:

(1) Decision initiation. The decision initiator who is rais-
ing the need to make a decision to solve a specific
problem (in this case the selection of CSOs).

(2) Decision preparation. People in the decision prepara-
tion are concerned with the study of documentation,
the presentation and production of internal reports to
share the findings of investigations of CSOs, meetings
in the form of workshops and seminars, as well as
informal discussions. Furthermore, they document a
rationale. Only a few cases (four cases) the rationale
for the decision was not documented, but rather
stated in discussions. In the remaining cases the docu-
mentation took place in the form of reports.

(3) Decision makers: The decision makers (taking the
decision and thus “making the final choice between
alternatives” (cf. [571)). The following ways of making
a decision were found: A leader takes a decision and
hence no consensus was required; The stakeholders
agreed and hence no negotiation needed to take
place and consensus was reached; A demonstrator/
simulator was used to illustrate the effects of the
solution to facilitate the decision.

Table 9 provides an overview of the roles involved in the
decision making, grouped by initiation, preparation, and
decision making. Table 10 shows the distribution for the
management roles involved.

Decision Initiation. With regard to decision initiators soft-
ware management is the most frequent initiator for the deci-
sion making cases. Non-managerial roles have initiated the
decision making process in three cases (software architec-
ture and design/construction).

In three cases (16, 17 and 19) multiple roles initiated the
decision. For software management the roles could be fur-
ther refined. There it is noteworthy that in six cases

248 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44,

NO.3, MARCH2018

TABLE 10
Management Roles: The Table Shows the Different Types of Management Roles Involved

Roles Initiation Preparation Deciding

Abs Abs % Abs %
Executive management (CEO/CTO) 6 30.00 11 31.43 8 32.00
Management (type unspecified) 7 35.00 9 25.71 9 36.00
Product management 1 5.00 7 20.00 2 8.00
Project management 4 20.00 7 20.00 4 16.00
Line management 2 10.00 1 2.86 2 8.00
Total 20 100.00 35 100.00 25 100.00

It distinguishes between decision initiation, preparation, and decision making. The absolute values and percentages are stated.

executive management (CTO/CEO) have initiated the deci-
sion making. Other roles initiating the decision making
were project leaders/manager, line manager, and product
manager. When multiple roles were involved, it was a com-
bination of management and technical roles.

Decision Preparation. Compared with the decision initia-
tion, more distinct roles were involved as stakeholders in
the process of supporting the decision with discussion and
expert input. Table 9 shows that the most common roles in
decision preparation were software management and soft-
ware architecture and design/construction. It was evident
that expert decision support was obtained in twelve cases
from either researchers or consultants. Additionally,
customer relations/sales and software architects and archi-
tects/ designers were involved frequently. Only in a few
cases software test (Cases 6 and 7), the actual customers
(Cases 2, 4 and 9) and sub-contractors (Cases 5, 9 and 16)
were involved.

Decision Making. The decision makers were primarily
managers. In comparison, only a few decision makers were
in the category of software construction. In two cases (4 and
8) a consensus decision between management and software
design/construction was made.

Number of Roles per Decision Making Process. Fig. 5 shows
the number of roles involved in the decision making process
related to initiation, preparation, and decision making.
Understanding the number of roles involved has important
implications on how to support the decision making pro-
cess. For example, as soon as multiple roles are involved
there is a need to support consensus building and incorpo-
rating multiple points of view during the process. Only
a few roles (primarily management) are involved in the

initiation (one individual role in 19 cases) and making the
decision, while a larger set of roles is involved in the prepa-
ration (in average three roles, see Fig. 5).

4.2.3 RQ1.3: Which Criteria (a) Were Considered for
Making the Decision and (b) Which Criteria
Initially Considered Ended Up as Significant for
the Final Decision?

(a) Criteria Considered. The criteria based on which the deci-
sion options are evaluated are shown in Table 11. The table
indicates the number of cases that have considered the crite-
ria and also the percentage of the total number of cases that
consider the criteria.

Frequently considered criteria related to the product are
quality criteria, such as performance, reliability, maintain-
ability, compatibility and security. Further product-related
characteristics were considered frequently—the most
frequently mentioned ones being certification, level of
openness and access/control. Furthermore, cost was an
important criterion. A sub-set of cases further specifies the
type of cost (e.g. to buy/rent, licensing, etc.).

As seen in Table 11, some of the criteria are considered
more frequently. We investigated the criteria that are con-
sidered together among the most frequently considered cri-
teria (frequencies greater than 10) as shown in Fig. 6. The
percentages are calculated by dividing the number of times
the criterion is considered together with another criterion
by the total number of times a criterion is considered. For
example performance is considered 17 times in total and
out of the 17 times, it is considered 13 times together
with reliability. Therefore the percentage of performance

Frequency
3

Mean =3.32 Mean =1.05
Std. Dev. =1.673 204 Std. Dev. =.213
N =22 N=22

Frequency

T T l T

T T T T T T T T T
1 2 3 4 5 6 7 1 2 3 4

Number of people involved in decision initiation

(a) Initiation

Number of people involved in decision
preparation

(b) Preparation

5 6 7 T T T T T T
1 2 3 4 5 6 7

Number of people making the decision

(c) Decision making

Fig. 5. Number of roles: The figure shows a histogram of the number of roles involved in the decisions presented in the cases.

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR... 249

TABLE 11
Decision Criteria: The Table Shows the Frequency with
Which the Individual Criteria Were Considered

Group Criterion Cases %
Product ~ Performance 17 77.27
Reliability 13 59.09
Maintainability 13 59.09
Certification 12 54.55
Level of openness and access/control 11 50.00
Security 9 491
Compeatibility 9 491
Functionality 7 31.82
Architectural dependencies 4 18.18
Compliance to standards and regulations 3 13.64
Licensing rules 3 13.64
Portability 2 9.09
Quality (general) 3 13.64
Safety 1 4.55
Stability 2 9.09
Ease of integration 1 4.55
Extandability 2 9.09
Longevity of asset 2 9.09
Scalability 2 9.09
User experience 1 4.55
Availability 1 4.55
Fitness for purpose 1 4.55
Number of users 1 4.55
Robustness 1 4.55
Financial ~Cost - general (time, effort, resources) 17 86.36
Cost - buy/rent 3 1.62
Cost - acquisition 1 4.55
Cost - Adaptation 1 4.55
Cost - Licensing 1 4.55
Cost - risks incurred 1 4.55
Cost - total cost of ownership 1 4.55
Cost - maintenance 1 4.55
Project Level of support 5 22,73
Familiarity with technology 1 4.55
Business Ecosystems 1 4.55
Market trend 1 4.55
time to market 1 4.55
Total 158

and reliability considered together and in this order is
(13/17)*100 = 76.47%. For reliability and performance the
value is 100 percent as shown in Fig. 6. This means that
every time the reliability is considered, it is always consid-
ered together with performance. Higher percentages indi-
cate that possible trade-offs between the criteria might need
to to be considered in the decision. For example, improving
reliability might be done under performance constraints.
The number of criteria considered are shown in Fig. 7. The
number of criteria taken into consideration impacts the

8] Mean =7.41
Std. Dev. =3.473
N =22
6
>
o
c
(0]
=]
o 4
o
b
w
2
0
1 3 5 7 9 11 13 15 17

Number of Criteria

Fig. 7. Number of criteria: The figure shows a histogram of the number of
criteria considered.

requirements on the solution, e.g., with respect to optimiza-
tion this means to choose an approach for multi-objective
optimization. When conducting an analysis of trade-offs
between criteria (i.e., how they positively or negatively influ-
ence each other) the complexity of the analysis increases.

(b) Criteria Considered Significant in the Final Decision. To
assess which criterion has a significant impact on the final
decisions two approaches are used. First, we captured
which criteria the subjects of the study mentioned as consid-
ered important in the final decision (Table 12). The criteria
that were important in the final decision are divided into
two groups: (1) Criteria that were considered in the prepara-
tion and are a sub-set chosen as important by the decision
maker, (2) New criteria not considered in decision prepara-
tion, but in decision making. Second, we statistically
explored the association between a criterion and a CSO in
order to determine if the decision options are more favor-
able when a particular criterion is considered. To evaluate
the association we considered the odds ratio (OR) between
the criterion and decision option (Table 13). Using both sta-
tistical and qualitative approaches provides a means for tri-
angulation and qualitative reflection.

We first present reflections for the data as explained by
the subjects shown in Table 12. Several interesting observa-
tions can be made from the Table 12. In several cases only a
small sub-set of criteria was considered in decision making
compared to the preparation (see e.g., Cases 4, 5, 8, 17, and
19). That is, if the relevant decision criteria could have been
identified earlier, this has a potential to save investigation

Performance Reliability Maintianabiliity Cost Certification Level of openness
Performance X 76,47 58,82 70,59 58,82 58,82
Reliability X 61,54 92,31 69,23 46,15
Maintianabiliity 76,92 61,54 X 92,31 53,85 46,15
Cost 73,68 63,16 63,16 X 57,89 47,37
Certification 91,67 83,33 58,33 91,67 X 50
Level of openness 90,91 81,82 54,55 63,64 54,55 X

Fig. 6. Criteria Trade-offs: The table shows the percentages of how often a criterion is considered together with another criterion in relation to the total

number of times a criterion is considered.

250 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH 2018
TABLE 12
Overview of the Criteria Considered: The First Column of the Table Shows the Criteria Considered in Preparation
Case Criteria considered in preparation Criteria considered important in Criteria considered
decision making important in decision
(subset of preparation) making (new)
In-house
Case 4 Performance, reliability, security, cost, user experi- Security
ence, compatibility, level of support, level of openness
and access/control, stability, and certification
Case 6 Performance, reliability, security, cost, user experi- Tradition of developing
ence, compatibility, level of support, level of openness in-house
and access/control, stability, and certification
Case 18 Performance, maintainability, reliability, cost, and Competence
certification.
Case 21 Performance, reliability, and certification Performance, reliability
COTS
Case 11 Performance, maintainability, reliability, security, Cost Ease to provide solutions
cost, safety, robustness, compatibility, and to customers
certification
Case 13 Performance, cost, level of support, market trend, Component history, market trend,
compatibility, architectural dependencies, level of performance, (most important), com-
openness/access and control, component history, patibility, cost, level of support,
certification architectural dependencies, level of
openness and access/control
Case 16 Maintainability, cost, fitness for purpose Cost, fitness for purpose
Case 22 Cost, functionality Cost, functionality
0SS
Case 3 Performance, reliability, security, cost, scalability, Scalability, functionality
level of openness/access and control
Case?7 Maintainability, cost Maintainability, cost
Case 15 Performance, maintainability, reliability, security, Architectural dependencies,
cost, architectural dependencies, level of openness reliability
and access/control
Outsource
Case1 Performance, reliability, cost (general), acquisition Relationship with
cost, adaptation cost, maintenance cost, functionality, supplier company
quality (general), familiarity with technology, ecosys- (maintain)
tem, architectural dependencies, longevity of the com-
ponent, extendibility, level of openness and access/
control, compatibility
Case 12 Performance, maintainability, reliability, cost, func- Performance, cost, maintainability,
tionality, compatibility, certification functionality, compatibility,
reliability
Case 19 Performance, maintenance cost, reliability, security, Maintenance cost Adaptability, level of
cost (general), quality (general), time to market, openness and access/
extendibility control
Case 20 Cost, certification Cost
Service
Case 14 Performance, cost, functionality, availability, level of Cost, functionality, performance,
support, level of openness and access/control availability, level of support
Combinations
Case 2 Performance, maintainability, reliability, security, N.A.
cost, risks incurred, licensing rules, level of support,
portability, compatibility, certification
Case 5 Performance, reliability, security, cost, compliance Performance, reliability
to standards and regulations, cost for buying/
renting, scalability, component history, certification
Case 8 Performance, portability, cost, licensing, functionality, Level of openness and access/con-
portability, licensing rules, level of openness and trol,
access/control, ease of integration, component history component history
Case 10 Performance, maintainability, reliability, security, Cost, maintainability, reliability,
cost, certification, level of openness and access/con- certification, level of openness
trol, compatibility, stability, number of users and access/control,
performance, security
Case 17 Performance, maintainability, cost, quality (general), Cost, functionality, compliance

compliance to standards and regulations, functionality,
level of openness and access/ control, compatibility

tostandards and regulations

The second column shows the subset of criteria that were considered in preparation, and were considered as significant in the final decision. The third column
shows new criteria that were not considered in the decision preparation, but were considered significant for the final decision.

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR... 251

TABLE 13
Decision Outcomes: The Odds Ratio Values of the Criteria in Relation to the CSOs Is Shown
Criteria In-house COTS 0SS Services Outsourcing
OR Conf. Int. OR Conf. Int. OR Conf. Int. OR Conf. Int. OR Conf. Int

Performance 2,18 0,20 0,82 0,11 1,17 0,09 0,00 0,00 0,81 0,07

24,21 6,34 14,52 9,52
Reliability 2,19 0,32 0,56 0,10 0,64 0,07 0,00 0,00 1,05 0,14

15,04 3,25 5,61 8,02
Maintianabiliity 2,19 0,32 1,25 0,21 2,40 0,21 0,67 0,04 1,05 0,14

15,04 741 27,72 12,27 8,02
Cost 0.399 0,04 0.16 0,00 0,39 0,00 0,56 0,00 0,64 0,13

3,52 0,00 26.32
Certification 6,86 0,66 1,25 0,21 0,17 0,01 0.18 0,00 0,78 0.09

71,72 741 1,96 5.69
Level of openness 3,75 0,54 0,45 0,08 3,75 0,32 0,00 0,00 0,18 0,02

26,04 2,67 43,31 1,92

The first column represents the frequently considered criteria. Columns two to six represent the odds ratio (OR) and confidence intervals (conf. int.) between the
frequently considered criteria and the CSO. For example, column two consists of all the odds ratio between in-house and each criteria. Similarly, row two consists
of all the odds ratio for performance with each CSOs. The odds ratios are computed using Equation (1) and the confidence intervals are computed using Equa-

tions (2) and (3) (see Section 3.2.4).

effort in the preparation phase (such as pre-studies). An
undesirable case is where the input from the preparation is
not considered in the final decision, and new criteria
become important. That is, the effort spent in preparation is
spent on investigating criteria that were not important (see,
for example, Cases 1, 6, 11, 18, and 19). For example, in Case
1 a large car manufacturer performed a pre-study to investi-
gate pros and cons as a basis for opting between In-house,
COTS, and OSS considering 15 criteria, namely: performance,
reliability, cost (general), acquisition cost, adaptation cost, main-
tenance cost, functionality, quality (general), familiarity with
technology, ecosystem, architectural dependencies, longevity of
the component, extensibility, level of openness and access/control,
compatibility. However, the best option with respect to the
criteria considered in preparation has not been chosen.
Rather a political decision was made to maintain a good
relationship with a supplier company.

We now triangulate the findings of the statistical analysis
(Table 13) with the information provided by the subjects
(see Table 12).

Overall, in-house has higher odds ratio values. In-house
seems to be a favorable decision option when all the fre-
quently considered criteria (excluding general cost and
maintainability) are considered. In particular, certification
has the highest odds ratio (OR = 6,86) when in-house is cho-
sen as the outcome. We can also see in Table 12, certification
is considered in all the cases (Case 4, 6, 18 and 21) where in-
house is chosen. Though, certification was considered in all
cases, it was not the criterion that turned out to be the most
significant. As some of the decisions were taken based on
new criteria (tradition and competence) as in Table 12.
However, since all the cases that had chosen in-house con-
sidered certification as a criterion and the higher values of
odds ratio in Table 13 indicate that certification is important
criterion for choosing in-house.

As seen from Table 13, performance (OR = 2, 18) and reli-
ability (OR = 2, 19) also have the highest odds ratio values
when in-house is chosen. This supports the qualitative data
in Table 12 as performance and reliability is considered in
all the cases where in-house is chosen and also turned out

to be important criteria in one of the case (Case 21). Level of
openness has higher odds ratio however, it was only consid-
ered in half of the cases when in-house was chosen.

Maintainability (OR = 2, 40) and level of openness (OR =
3, 75) have highest odds ratio when OSS is chosen according
to Table 13. This is also supported by qualitative data in
Table 12 as both maintainability and level of openness is
considered in two out of three cases where OSS was chosen.
In addition, maintainability ended up being important crite-
rion in one of the case (Case 7).

According to Table 13, cost is associated with lower odds
of any CSOs being chosen as all values of odds ratio are
below one. However, according to the qualitative data in
Table 12, cost has been considered important in choosing
COTS, outsourcing and services.

4.2.4 RQ1.4: Which Decision Making Approach/Model
Was Used?

Table 14 shows the approaches used in decision making.
Expert opinion/judgment has been utilized in all cases.
Expert judgment was supported by a number of
approaches. Prioritizing and ranking the alternatives with
respect to weighted criteria (four cases), listing the Pros and
Cons (five cases), and Pugh analysis (four cases) were iden-
tified. More formal approaches for estimating (e.g.,
COCOMO) or the use of models for decision making (e.g.,
optimization) was not observed. It should be noted that we
explicitly considered more structured decision making tech-
niques such as the Analytical Hierarchical Process (AHP),
elicitation of weights under decision model [58] (Item 28

TABLE 14

Approaches Used for Decision Making (Frequency)
Decision making approaches used Cases
Expert opinion/expert judgment 22
Pros and Cons 5
Prioritization, ranking, weighted criteria 4
Pugh analysis (Decision-matrix method) 4
Total 22

252 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH2018

10 Mean =905.70
Std. Dev. =992.038
=20

Frequency

L

3000.00 4000.00 5000.00

T
.00 1000.00 2000.00

Effort spent in decision preparation
Fig. 8. Effort in decision preparation: The figure shows a histogram for

the effort spent (persons/hour) on decision preparation. The intervals
are illustrated in intervals of 500 person hours.

in Table 5). However, they were not found in the cases as
the decision making was discussion based and ad-hoc.

4.3 RQ2: What Was the Result of the Decision
Making Process?

The second research question focuses on the description of

the decision outcomes while following the decision making

processes characterized in Section 4.2.

4.3.1 RQ2.1: What Was the Effort Invested in the

Decision Making Process?

The effort spent on preparing the decision for the decision
maker is shown in Fig. 8, the z-axis shows effort spent in
person hours. The effort data was available in 16 of 22 cases.
The average time spent on preparation was around 780 per-
son hours.

In comparison Fig. 9 shows the effort spent on decision
making, but it is available for 16 cases, only. This indicates
only a small fraction of the effort spent in preparation (on
average 30 person hours) is spent on decision making.

4.3.2 RQ2.2: Were the Chosen CSOs Considered the
“Right” Choice Retrospectively?

Looking at how the decisions were evaluated it is visible
that a high number of decisions were perceived as sub-
optimal, which applied to a total of nine cases (see Table 15).
In only seven cases the decision was perceived as clearly
positive. This highlights the need for support in the decision
making processes to improve the decision making out-
comes. Considering the decision year it is visible that in the
cases the majority of cases at least two years are in-between
the decision year and the year the data was collected (2016).
Hence, this allowed for a reflection by the participants as
there was sufficient time allowing for an assessment.

Table 15 also provides an insight on why one option was
preferred over another. For example, it is visible that in-
house was preferred over COTS and services for security

67 Mean =24.54
Std. Dev. =27.455
N=12
5
4
>
o
c
[0}
=]
o 34
(o]
2
w
2-
1
[}
.00 20.00 40.00 60.00 80.00 100.00

Effort spent in decision making

Fig. 9. Effort in decision making: The figure shows a histogram for the
effort spent (persons/hour) on decision preparation.

reasons (Case 4), in-house over COTS and outsource for per-
formance and stability reasons (Case 21), etc. We briefly
present the rationale stated by the subjects for either evalu-
ating the decision positively (see evaluations with the
\/-symbol in Table 15) or negatively (see evaluations with
the -symbol).

Positive (y/). When choosing in-house the practitioners
perceived the best decision was taken in comparison to out-
sourcing. Furthermore, another reason to assess the choice
of in-house development over outsourcing was the
improvement in the reliability of the product. When COTS
has been chosen, the absence of issues were raised as the
reason for the positive assessment when being compared to
in-house development. OSS has been found to save costs, in
Case 15 a factor of cost savings by the factor of 10 has been
mentioned. When choosing a combination of options Cases
10 and 17 reported positive results.

Negative (). For the cases choosing in-house development
two reasons for negative assessments have been given,
namely the decrease in product quality with respect to secu-
rity and issues with the decision making process itself. When
choosing COTS, in one case product quality issues arose
with regard to performance. When outsourcing was chosen
only negative assessments were found in the cases, all of
them being related to product quality issues. For the choice
of combinations of CSOs issues arose with regard to the lack
of ability to foresee problems and to conduct estimations.

5 DISCUSSION

The discussion is structured along the research questions. In
particular, the results of the systematic review [9] and the
case survey are compared as both studies had a similar focus.

5.1 Reflections with Respect to the Research
Questions

The first research question explored how CSOs are chosen in
practice, four research questions were formulated and are

discussed in the following. Three of the four questions are

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR... 253

TABLE 15
Decision Outcomes and Their Evaluation: The Table Shows the Outcome for Those Decision Cases
Where a Decision Has Been Reached at the Point of Time of Data Collection

Case Decision Outcome of the decision Evaluation of the final decision / = positive, o = indifferent,
year 1 = negative)
In-house
Case 4 2012 In-house over COTS and Services {: Product - Security: Company needed to build themselves,
as security requirements could not be met by other options, i.e.,
other options would have been preferred if possible
Case 6 2011 In-house over COTS and outsource f: Decision making process: Huge effort invested in the
investigation of vendors, and in the end it was done in-house
anyways
Case 18 N.A. In-house over outsource \/: General: Perception that the best decision was made
(no rationale given)
Case 21 N.A. In-house over outsource V/: Product - Reliability: Reliability was improved
COTS
Case 11 2006 COTS over in-house \/: Absence of issues: No issues later on, decision was
considered a success
Case 13 2013 COTS over OSS : Product - Performance: Issues arose in terms of computing
performance that was not seen in advance, a lager pre-study
could have helped
Case 16 2009 COTS over in-house o
Case 22 N.A. COTS over in-house 0
0ss
Case 3 2004 OSS over COTS /: Financial - Cost: Cost of the chosen solution was low
Case 7 2006 OSS over COTS 0
Case 15 2013 OSS over COTS and in-house /: Financial - Cost: Very successful with regard to cost
reduction by a factor of 10
Outsource
Case 1 2008 Outsource over COTS and T : Product, financial, as well as project criteria: Sub-optimal
in-house solution with respect to criteria considered in preparation
Case 12 2005 Outsource over in-house T: Product - Performance: Underestimated computing
resources needed (performance) of the chosen solution
Case 19 2015 Outsource over in-house and o
services
Case 20 N.A. Outsource over in-house T: Product - Quality (general): Quality issues arose
Service
Case 14 2012 Services over in-house : Product - Quality (general): Solution not as successful
as hoped for, quality issues cost time to market, service needs
to be replaced.
Combinations
Case 2 2012 COTS and Services over OSS o: Project - Level of Support, Financial - Cost: Trade-off between
level of support (safer solution), but with a higher cost
Case 5 2014 COTS, Services and Outsource : Decision making process: Challenging to estimate and assess
over In-house the impact and decision required long lead-time
Case 8 2014 COTS over OSS (first iteration) 1: Decision making process: Problems in details could not be
and OSS over COTS (second foreseen (old version of programming language became an
iteration) issue for chosen mature component)
Case 10 2007 In-house and COTS over an i /: General: Perceived as the right decision
ndividual option
Case 17 2013 In-house and Outsource over /: Project - Familiarity with technology: Perceived as

an individual option

positive decision with regard to a combination of in-house

and outsource in terms of available competence and responsibility

The case number is shown. The year of decision shows the year in which the decision was taken. The evaluation of the outcome was based on perception. We show
the assessment of the subjects in terms of whether the decision was positive, they were indifferent, or negative. Furthermore, the rationales for the assessment

provided by the subjects have been stated.

shared with the literature review by Badampudi et al. [9],
namely options considered (RQ1.1), criteria considered
(RQ1.3), and decision making method (RQ1.4). Stakeholder
roles were not explicitly discussed in the primary studies
included by Badampudi et. al.,, and hence are new results
provided by the case survey in the context of choosing CSOs.

Options Considered (RQ1.1). The contributions of existing
literature and case survey are mapped as shown in Table 16.
The primary studies include empirical comparisons
between CSOs and solution proposals of how to choose
among them. Even though there are comparisons, no deci-
sion making solutions assist the COTS versus OSS decision.

254 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH2018

TABLE 16
Mapping of Existing Literature and Case Study Contributions
with Respect to CSOs: The Table Shows the CSOs Considered,
the Number of Studies, as Well as the Number of Cases

CSOs considered Number of primary Number of cases
studies

Comparisons Solutions
COTS versus OSS 6 0 7
In-house versus 2 6 9
COTS
In-house versus 0 2 13
Outsource
In-house versus 1 0 2
0SS
COTS versus 0 0 5
Outsource
OSS versus 0 0 2
Outsource

Comparisons refer to studies investigating the properties of the CSOs in com-
parison to each other. Solutions refer to proposed approaches to decide between
CSOs. The number of cases show how many times the CSOs were considered
in comparison to each other in our case survey.

The case survey reported six cases that consider COTS and
OSS in the decision.

While there are no primary studies comparing in-house
and outsourcing, two papers propose decision making solu-
tions for the selection of CSOs. Overall the number of pri-
mary studies (two papers) discussing in-house and
outsource is low despite being the most frequent decision as
revealed by our case survey (11 of 22 cases).

In-house and COTS have also been compared in primary
studies identified in our systematic literature review [9],
and decision making solutions are proposed to make in-
house versus COTS decisions. The frequencies of the pri-
mary study and case survey are consistent for the in-house
versus COTS options.

COTS versus outsource and OSS versus outsource are
neither compared nor any decision making solutions are
proposed. Therefore, based on the existing literature, it is
unknown whether such decisions are even considered by
decision makers. However, the case survey identify cases
where COTS versus outsource and OSS versus outsource
decisions are considered. There is thus a need for better sup-
port in practice.

The number of times options were chosen in comparison
to the times they were considered indicates that all options
are viable choices for the software-intensive systems consid-
ered. In-house has been selected in 41 percent of all cases it
was considered (7/17), COTS in 50 percent (7/14), Out-
source in 55 percent (6/11), OSS in 83 percent (5/6) and
Services in 40 percent (2/5).

Stakeholders (RQ1.2). In most cases management roles ini-
tiated the decision, while the decision making preparation
usually involved several roles from management, software
construction and development, but also software design.
Also, consultants were used to support the preparation of
the decision, which indicates that additional competencies
compared to those in the organization are needed to make
the decision.

Criteria (RQ1.3). We first look at trade-offs between crite-
ria, and compare them to the trade-offs discussed in our sys-
tematic literature review [9].

Trade-Off 1. Trade-offs between market-trend, technical
support and maintainability are observed in the literature
(cf. [9]). Following market trend indicates frequent updates
which involves additional maintenance effort. At the same
time, the need for a high pace in releasing new features is
required, which may result in technical debt as shortcuts
may be taken. Also, if the component is not upgraded to the
latest available version, then the support offered from sup-
plier/vendors might not be extended. Hence, a trade-off
needs to be made between following market trends, main-
taining the system stability and retaining the technical sup-
port. In the case survey 14 cases consider maintainability,
five cases consider technical support, and one case consid-
ers market-trend. This means that maintainability, technical
support, and market-trend are not considered together in
the decisions.

Trade-Off 2. Another trade-off identified in the literature is
between source code availability, technical support, and
license [9]. The availability of source code might be a criteria
for selecting a decision option so that the code can be
changed. However, some licenses require changes in the
code to be open. Also, technical support might not be
extended for the modified code. Although source code avail-
ability (12) has high frequencies of cases, the frequencies of
license (3) and technical support (5) are comparatively lower,
which implies that the trade-off is not considered.

Trade-Off 3. Development effort and integration effort
trade-off is identified in the literature [9]. Development
effort can be saved if the development is not done in-house.
However, if the saved development effort is less than the
additional integration effort, then the decision is not opti-
mal. No such trade-off is considered in any of the cases.

Overall the trade-offs observed in the cases and literature
are not consistent, i.e., the existing studies do not support
the processes observed in industry. This indicates a poten-
tial gap between industry practice and the focus of research
with regard to sourcing decisions when looking at the
trade-offs made. Overall, this merits the investigation of
trade-off practices in the industry to support researchers in
the selection of future research topics and questions with
regard to trade-offs.

The need for prioritizing the criteria and identifying the
important ones also became evident when analyzing the
final decisions taken, and the criteria ending up as important
among those considered. The decision problem may be sim-
plified if criteria are identified and removed early. Much can
be learned from the requirements community in that regard,
in particular requirements prioritization techniques may be
of value [59]. Barney et al.’s [60] study gives an overview of
approaches for trade-offs between quality attributes, which
may also be useful to not only trade-off between quality
attributes, but by considering other factors as well.

Decision Making Methods (RQ1.4). The methods for deci-
sion making devoted to in-house versus COTS and in-house
versus outsource exist in the literature [9], both trade-offs
being frequently considered in the case survey. All the in-
house versus COTS decision making solutions proposed in
the literature consider technical factors, notably time, cost,
and reliability. These factors are easy to calculate; probably
this is the reason why the methods have considered them.
Most of the cases in this case survey considered cost and

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR... 255

TABLE 17
Correlation with Effort: The Table Shows the Correlation
with Effort in Relation to the People Involved as Well
as the Complexity of the Decision Problem

Criteria Spearman Correlation to Prep. Effort
Number of CSOs 0.559

Number of Decision 0.350

Criteria

Number of People in 0.075

Preparation

The complexity of the decision problem is indicated by two variables, the num-
ber of CSOs and the number of criteria considered.

reliability in their decisions. Time has not been considered
that often. However, the case survey identified many other
criteria that are considered in the decisions (which also
include non-technical criteria), which are not included in
the methods proposed in literature.

The methods for choosing between in-house versus out-
source proposed in the literature consider requirement
dependencies [9]. However, this is not identified as a crite-
rion in any of the cases in the case survey.

All the decision making methods proposed in literature
specifically for CSOs are automated and mathematical, i.e.,
they are highly formalized. However, the cases indicate that
the most popular techniques used in making decisions are
expert based, which involves subjective opinions. This indi-
cates that the methods proposed in the CSO literature are
not consistent with the practice in industry. This also sug-
gests that practitioners are looking for decision making
methods that aid in decision-making and not the solutions
that give the decision/outcome. However, the solutions
proposed for GDM in the context of architectures seem
more appropriate (see Section 2.2.1).

Further, according to the case survey, the management
takes most decisions. The decision making methods pro-
posed in the literature are quite complex. Due to the com-
plexity and learning curve involved, the managers might
not accept or use the solutions proposed in the literature.

Effort Invested (RQ2.1). The effort invested in preparing
the decision is quite significant, with the mean effort being
780 person hours, while in several cases the effort was over
1,000 hours. In order to understand the factors we investi-
gated the correlation between the effort invested and the
complexity of the decision problem (number of criteria and
number of options considered). In addition we calculated
the correlation between the number of people involved
in the preparation and the effort. Table 17 shows the results
of the correlation (using the non-parametric method pro-
posed by Spearman). Rubin [61] defines boundaries for the
strength of correlations. A strong positive correlation is
observed for the number of CSOs, and a moderate positive
correlation for the number of decision criteria. A lower cor-
relation was observed with regard to the number of people
involved. Given that the number of CSOs as well as the
number of criteria seem to be related to effort in prepara-
tion we suggest a staged process for choosing among
options to not invest preparation effort on more obvious
exclusions. Similar reflections were presented in the field
of requirements engineering, where it was found that more
complex decisions take more time [62]. As a consequence

requirements triage has been introduced that removes the
most obvious options first to avoid investigative effort [63].
Thus, similar ideas may be relevant for choosing among
CSOs. Even though the correlation between effort and the
number of people was lower in comparison to the other
measures (see Table 17) communication overhead during
the preparation should still be considered as factor besides
the number of CSOs and decision criteria as the overhead
increases with the number of people involved.

Retrospective Reflection on CSO Choice (RQ2.2). In seven
cases only, the result of the decision was perceived as posi-
tive. In particular, if high investments have been made in
preparing the decision, and the final decision is not per-
ceived as successful, then the preparation effort can be con-
sidered wasted. The methods used for decision making
were mostly experience based, and no decision support sys-
tems or methods have been used (such as estimations, exist-
ing evidence from research); thus the results indicate that
there is an industrial challenge relevant for the research to
address. In particular, decision support systems aiding the
experts may be of interest to design for this particular deci-
sion problem. Early attempts have been made and prelimi-
nary results are available in that regard (cf. Wohlin et al.
[64]). Furthermore, the related work on architectural deci-
sion making provides solutions to record rationales and
drive reflections in architectural decision making in Section
2.2.1 (e.g., [32], [33], [34]).

5.2 Characterization of Decisions

According to Larsson [11] case surveys focus on identifying
patterns (similarities and differences) between cases. With
regard to the research questions each individual question
investigated a specific aspect of the decision making case.
We used hierarchical cluster analysis, in particular cluster-
ing of binary data (presence and absence of variables or
attributes in cases) for this purpose. The method to calculate
the clusters was Squared Euclidean Distance. The clustering
is used as a reflective tool. It takes the values obtained
across research questions into account to determine the sim-
ilarity and differences between the cases. We only included
variables related to the decision case (CSOs, stakeholders,
and decision criteria) to find commonalities of how decision
making has been made. Fig. 10 shows the Dendrogram. It is
evident that four cases are closely related, namely 18, 20, 21,
and 22. Furthermore, cases 10 and 11 are very closely
related. Overall, the Dendrogram shows that no clear pat-
terns could be obtained as the distances between clusters
were high. Using two-step clustering as an alternative
approach showed that the shapes of clusters are not clearly
identifiable, which is a sign that, besides the groups above,
no clear patterns across cases are observable.

It has already been established that the cases share deci-
sion making characteristics, and a number of cases (more
than two) is concerned, hence it is of interest to take a closer
look at them. Hence, their contexts and outcomes are of
interest to compare, which may explain why they are in the
same cluster. The cluster of cases 18, 20, 21, and 22 is inter-
esting because three of the four cases were perceived as pos-
itive. Despite of being in different domains (cases 18 and 22
are in the automotive domain and cases 20 and 21 are in the
telecom domain) both of them are similar. The cases

256

Dendrogram using Average Linkage (Between Groups)
Rescaled Distance Cluster Combine
0 s 10 15

20 25
Il Il

Fig. 10. Hierarchical clustering of cases: The Dendrogram shows the
similarity and dissimilarity between cases to explore whether interesting
or shared patterns emerged in the data. The more similar two cases, the
closer the vertical lines are to the left-hand side of the figure. For exam-
ple, cases 20 and 22 are more similar than cases 8 and 13. Only four
cases clearly appear together in a cluster, namely 20, 22, 18, and 21.

characteristics, the context, and the outcome for the four
cases in the cluster are briefly summarized in Table 18.

5.3 Comparison with the General Traits of Decision
Making from Related Work

In the earlier sections we compared the findings of the case
survey with the literature specific to each research question.
The more general characteristics of decision making for archi-
tecture, CSO, and OTS decision making are presented in this
section. We summarized eight characteristics of decision
making in Table 19, and stated whether they are found in this
case survey and provide reflections for the applicability of
the findings. The table shows that two findings are not well

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH2018

supported, in particular L3, L6, L10, and L11. These show
potential ways of improving industrial decision making (e.g.,
more explicitly considering risks and the experience and
familiarity with the technology), while also may influence
research solutions (e.g., providing solutions for CSO decision
making that facilitate non-deterministic decisions). Solutions
are present for architecture decision making and may be tai-
lored to suit CSO decision making (see Section 2.2.1).

5.4 Validity Threats
Larsson [11] highlights a number of limitations related to
the case survey method. Furthermore, threats described in
Petersen and Gencel [65] are highlighted where applicable.
Generalizability. First, Larsson points out that a limited
number of cases could be studied, given that a case survey
extracts more detailed information than a survey. Further-
more, the available cases are limited and not easily accessi-
ble. In this study, a total of 22 cases have been obtained. As
it can be seen from Table 6 different domains and applica-
tion types were studied. The automotive and telecommuni-
cation domains are most frequently represented, which
introduces a bias in the dataset. Ayala et al. [2] observed
that there is an increasing adoption of OSS components
over proprietary (in-house) solutions. In Ayala et al.’s study
most of the experiences were reported from software con-
sultancies. In our case survey study all sourcing options
were considered, and also frequently chosen for all CSOs
(as shown in Fig. 4). The difference in findings between the
two studies indicates the need for further investigations.
Descriptive Validity—Factual Accuracy. There is a validity
threat in that the coding is misunderstood and that data are
not available/missing. Given that all researchers reviewed
and iterated the instrument (see extraction scheme in Table 5)
the risk of wrong interpretations of the scheme was reduced.
Interviews were conducted over the phone, which allowed
to clarify and ask follow-up questions to receive accurate
answers. Another threat to factual accuracy is missing data.
Effort data has been elicited for 16 out of 22 cases. Not all
respondents were confident in being able to provide an

TABLE 18
Case Cluster: The Table Shows the Four Cases that Were Identified as Similar Based Through the Cluster Analysis
Attribute Case 18 Case 20 Case 21 Case 22
Context
Domain Automotive Telecom Telecom Telecom
Company size 10.000 100.000 100.000 3
Development unit size 10 100 5 3
Development method Agile Agile (Scrum) Agile (Scrum) N.A.
Decision case characteristics
CSOs considered In-house, Outsource In-house, In-house, Outsource In-house, COTS
Outsource
Stakeholders (initiation) Software construction Management Management Management
Stakeholders (preparation) =~ Management, Expert Group Management Management, Sales Management
Stakeholders (decision Management Management Management Management

making)
Criteria considered Performance, maintainability,

reliability, cost, and certification

Method Expert judgment
Outcome

Decision impact Positive

Effort 2400

Cost, certification Performance, reliability,

and certification

Functionality, Cost

Expert judgment Expert judgment Expert judgment
Negative Positive Indifferent
640 480 N.A.

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR... 257

TABLE 19
Related Work Compared with the Case Survey: The Table Shows the Main Findings for the General Characteristics of Decision
Making for Architecture, CSO Decision Making and OTS Decision Making

Supported by case survey?

Reflections

Architecture decision making

ID Related work findings

L1 Architectural decisions types are structural, Yes
property and executive decisions.

L2 Architecture decisions are made in a group Yes

L3 Tool support for group decision making, and No
the possibility to review decisions after they
have been made

In the case survey structural decisions were
taken

Prepared in the group, reflections and ration-
ales identified, but the actual decisions (final
word) is made by individuals (mostly manage-
ment)

Not present and thus a source of improve-
ment. Could have facilitated to collect more
information in the case survey in comparison
of what could be obtained

L4 Architecture decisions are not taken in isola- ~ Yes Bundled related decisions using the same cri-
tion teria and treated them as a single decision
problem
L5 Decision making is non-deterministic and Yes No prescribed/ systematic decision making
argumentative method used, rather discussion
CSO decision making
L6 Optimization solutions for CSO selection No Decisions were based on discussions and
have been proposed assuming deterministic without structured approaches (i.e., ad-hoc)
decision making
OTS decision making
L7 The solutions in the literature do not match ~ Yes Non-deterministic approaches for CSO selec-
the practice in companies tion were used in the cases, while CSO litera-
ture (L6) assumes deterministic decision
making.
L8 Decision making approaches are not formal, ~ Yes No well structured decision making method
but rather ad-hoc used (the most structured was Pugh-analysis,
while otherwise the listing of pros and cons
and less structured discussions took place)
L9 In OSS decision imitative is mostly taken by Partially The initiation of the decision was mostly
developers, while leaders (such as CEOs) driven by management, the final word was
have the final word mostly given by management (CEOs/CTOs)
L10 Risks are considered during the decision No Only the risk of cost increase was considered
in one case
L11 Experience with the component is an impor- No Only in one case familiarity with the technol-

tant factor

L12 Developers move towards OSS development Partially

ogy has been raised as an important criterion.
In 5 of 6 cases where OSS was considered it
was chosen. Though it was not the default
choice by companies, and they invested sub-
stantially to assess alternative options.

It also indicates whether the finding is supported by the case survey, distinguishing between fully, partially, and not supported. A reflection for the degree of sup-

port is also stated.

accurate number, thus six cases did not include the effort. We
aimed at including only reliable data where the subjects felt
confident in the information they were providing.

Theoretical Validity—Confounding Factors and Controlla-
bility. It would be desirable to make an inference from the
characteristics of the decision making process to the success
of the decision. Reflections related to the relationship
between the two (process and success) are prone to con-
founding factors. Of particular interest are the context char-
acteristics of the cases (see Table 6) where we captured size
of the development unit developing the system, the domain,
the application type, and the development methodology
used in projects. In the case survey we did not identify addi-
tional context factors that may be of relevance. Though,
looking at the literature a variety of factors may play a role
(cf. Carlsson et al. [66])), such as organizational and team
complexity, organizational models, developer experience

with respect to the project, and individual development
practices used (such as pair programming). Given that the
practitioners only considered a subset of the contextual fac-
tors and criteria presented by Carlsson et al. the need for
providing a more systematic approach of integrating con-
text information into decision making is highlighted.
Interpretive Validity—Objectivity of the Researcher. Based
on the findings from the survey conclusions and recommen-
dations to practitioners are provided. The recommendations
follow the data, and there is a risk that an individual
researcher draws biased conclusions. The risk is reduced
due to the number of authors involved in the study who
provided their input to the reflections and key findings.
Interpretation and Coding of the Data. Distakes and poten-
tial bias are probable when interpreting and coding a large
dataset. The coding activity is similar to what would be con-
ducted in a systematic literature review when coding

258 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH2018

extracted data from papers. Kitchenham et al. [67] recom-
mends to peer-review the coding. Consequently, the second
and third authors of the paper reviewed the coding done by
the first author.

Repeatability. A data extraction form and the GRADE tax-
onomy [52] support the data extraction increases its objec-
tivity, though a threat to the repeatability of the results
remains due to the characteristics of the research.

6 CONCLUSION

In this paper we investigated how CSOs are chosen by con-
ducting a case survey supported by Larsson’s guidelines
(cf. [11]). We identified and described 22 decision cases for
choosing CSOs in the contexts of software-intensive sys-
tems. The CSOs were based on the experience of experts
participating in a research project for choosing CSOs
(ORION), and interviews with industry practitioners. 11
cases were based on experiences of the research project
members, and 11 based on interviews.

All options considered were viable and have been
selected by the practitioners, which includes In-house,
COTS, OSS, Outsourcing or combinations of them. We
found a mismatch between industry and practice. In partic-
ular, CSO related solutions for decision making were mostly
deterministic, while decisions in practice were non-deter-
ministic. Thus, solutions proposed for supporting decisions
in the context of architecture in general are of interest for
practitioners, as those take non-deterministic decision mak-
ing into account. One example is the repository grid tech-
nique. Furthermore, solutions to record past decisions in a
systematic way are of interest to gain deeper insights of
what decisions can be reused in similar contexts. Such learn-
ing is important as in many cases the decision made was not
perceived as successful. We found that recommendations in
the literature were not followed, such as considering risks
and experiences and the familiarity with the technology as
explicit criteria. These are potential avenues for improve-
ments. Also, decision making approaches were mostly ad-
hoc and not well structured.

A common reason for the decision to be perceived as
negative were issues with the quality, such as performance
and security. Means for an early assessment and estimation
of these properties are of use. A small set of cases used
simulators.

Future Work. In summary, future work needs to focus on
the following avenues:

e Conduct more in-depth empirical studies of how
CSOs are chosen in industrial practice. In particular
complementary case studies and large-scale surveys
are of interest.

e Provide support for group decision making and con-
sensus building as in the final decision aspects of the
investigation (such as criteria and recommendations)
were not followed, and the final word for the deci-
sion lied with individuals (mostly management). In
particular, the tailoring of existing solutions for soft-
ware architecture GDM is interesting.

e DProvide tools to systematically capture and thus
identify reusable decisions and create an evidence
base for CSO decision making.

ACKNOWLEDGMENTS

The work is partially supported by a research grant for the
ORION project (reference number 20140218) from The
Knowledge Foundation in Sweden.

REFERENCES

[1] P. Kruchten, “An ontology of architectural design decisions in
software intensive systems,” in Proc. 2nd Groningen Workshop
Softw. Variability, 2004, pp. 54-61.

[2] C. Ayala, @. Hauge, R. Conradi, X. Franch, and J. Li, “Selection of
third party software in off-the-shelf-based software develop-
ment—An interview study with industrial practitioners,” J. Syst.
Softw., vol. 84, no. 4, pp. 620-637, 2011.

[3] M. M. Gerea, “Selection of open source components-a qualitative
survey in norwegian it industry,” M.Sc. thesis, Dept. of Computer
and Information Science, Norwegian University of Science and
Technology (NTNU), Trondheim, Jun. 2007.

[4]].Li R. Conradi, C. Bunse, M. Torchiano, O. P. N. Slyngstad, and
M. Morisio, “Development with off-the-shelf components: 10
facts,” IEEE Softw., vol. 26, no. 2, pp. 80-87, Mar./ Apr. 2009.

[5] M. Torchiano and M. Morisio, “Overlooked aspects of COTS-
based development,” IEEE Softw., vol. 21, no. 2, pp. 88-93, Mar./
Apr. 2004.) i

[6] H. Holmstrém, E. O. Conchuir, P. J. Agerfalk, and B. Fitzgerald,
“Global software development challenges: A case study on tem-
poral, geographical and socio-cultural distance,” in Proc. 1st IEEE
Int. Conf. Global Softw. Eng., 2006, pp. 3-11.

[7]1 B. Ulziit, Z. A. Warraich, C. Gencel, and K. Petersen, “A concep-
tual framework of challenges and solutions for managing global
software maintenance,” J. Softw.: Evol. Process, vol. 27, no. 10,
pp. 763-792, 2015

[8] R. Britto, D. Smite, and L. Damm, “Software architects in large-
scale distributed projects: An Ericsson case study,” IEEE Softw.,
vol. 33, no. 6, pp. 48-55, Nov./Dec. 2016.

[9] D.Badampudi, C. Wohlin, and K. Petersen, “Software component

decision-making: In-house, OSS, COTS or outsourcing—A system-

atic literature review,” J. Syst. Softw., vol. 121, pp. 105-124, 2016.

L. Groher and R. Weinreich, “Collecting requirements and ideas

for architectural group decision-making based on four approach-

es,” in Proc. Eur. Conf. Softw. Archit., 2015, pp. 181-192.

R. Larsson, “Case survey methodology: Quantitative analysis of

patterns across case studies,” Academy Manage.]., vol. 36, no. 6,

pp. 1515-1546, 1993

T. Gorschek and C. Wohlin, “Requirements abstraction model,”

Requirements Eng., vol. 11, no. 1, pp. 79-101, 2006.

T. Vale, I. Crnkovic, E. S. de Almeida, P. A. d. M. S. Neto, Y. C.

Cavalcanti, and S. R. de Lemos Meira, “Twenty-eight years of

component-based software engineering,” . Syst. Softw., vol. 111,

pp. 128-148, 2016

J. Li, R. Conradji, O. P. Slyngstad, M. Torchiano, M. Morisio, and

C. Bunse, “A state-of-the-practice survey of risk management in

development with off-the-shelf software components,” IEEE

Trans. Softw. Eng., vol. 34, no. 2, pp. 271-286, Mar./ Apr. 2008.

T. Helokunnas, “The dimensions of embedded COTS and OSS

software component integration,” in Product Focused Software Pro-

cess Improvement. Berlin, Germany: Springer, 2002, pp. 509-518.

J. Li, R. Conradi, O. P. N. Slyngstad, C. Bunse, M. Torchiano, and

M. Morisio, “An empirical study on decision making in off-the-

shelf component-based development,” in Proc. 28th Int. Conf.

Softw. Eng., 2006, pp. 897-900.

K.]J. Stewart, A. P. Ammeter, and L. M. Maruping, “A preliminary

analysis of the influences of licensing and organizational sponsor-

ship on success in open source projects,” in Proc. 38th Annu.

Hawaii Int. Conf. Syst. Sci., 2005, pp. 197c¢-197c.

W. Chen, J. Li, J. Ma, R. Conradi, J. Ji, and C. Liu, “An empirical

study on software development with open source components in

the chinese software industry,” Softw. Process: Improvement Prac-

tice, vol. 13, no. 1, pp. 89-100, 2008.

P. Di Giacomo, “COTS and open source software components:

Are they really different on the battlefield?” in COTS-Based Soft-

ware Systems. Berlin, Germany: Springer, 2005, pp. 301-310.

J. S. Norris, “Mission-critical development with open source soft-

ware: Lessons learned,” IEEE Softw., vol. 21, no. 1, pp. 42-49,

Jan./Feb. 2004.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR...

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[391

[40]

[41]

[42]

[43]

L. Brownsword, T. Oberndorf, and C. A. Sledge, “Developing new
processes for COTS-based systems,” IEEE Softw., vol. 17, no. 4,
pp- 48-55, Jul./ Aug. 2000.

T. Helokunnas and M. Nyby, “Collaboration between a COTS
integrator and vendors,” in Software Quality. Berlin, Germany:
Springer, 2002, pp. 267-273.

J. Li, F. O. Bjernson, R. Conradi, and V. B. Kampenes, “An empiri-
cal study of variations in COTS-based software development
processes in the Norwegian IT industry,” Empirical Softw. Eng.,
vol. 11, no. 3, pp. 433-461, 2006.

B. Mishra, A. Prasad, and S. Raghunathan, “Quality and profits
under open source versus closed source,” in Proc. Int. Conf. Inf.
Syst., 2002, Art. no. 32.

S. M. Syed-Mohamad and T. McBride, “A comparison of the reli-
ability growth of open source and in-house software,” in Proc.
15th Asia-Pacific Softw. Eng. Conf., 2008, pp. 229-236.

R. Torres, “Developer-led adoption of open source software
libraries: A conceptual model,” in Proc. Eighteenth Americas Conf.
Info. Syst. Proc. (AMCIS 2012), 2012, p. 34.

S. A. Hissam and C. B. Weinstock, “Open source software: The
other commercial software,” in Proc. 1st Workshop Open Source
Softw. ICSE, 2001, pp. 1-2.

J. Li, et al., “Validation of new theses on off-the-shelf component
based development,” in Proc. 11th IEEE Int. Symp. Softw. Metrics,
2005, pp. 26-26.

S. A. Hissam, D. Plakosh, and C. Weinstock, “Trust and vulnera-
bility in open source software,” IEE Proc.-Softw., vol. 149, no. 1,
pp. 47-51, Feb. 2002.

J. Rudzki, K. Kiviluoma, T. Poikonen, and I. Hammouda,
“Evaluating quality of open source components for reuse-inten-
sive commercial solutions,” in Proc. 35th Euromicro Conf. Softw.
Eng. Adv. Appl., 2009, pp. 11-19.

U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation
framework for architecture decisions,” . Syst. Softw., vol. 85, no. 4,
pp- 795-820, 2012.

I. Malavolta, H. Muccini, and S. Rekha, “Enhancing architecture
design decisions evolution with group decision making
principles,” in Proc. Int. Workshop Softw. Eng. Resilient Syst., 2014,
pp- 9-23.

M. Nowak and C. Pautasso, “Team situational awareness and
architectural decision making with the software architecture
warehouse,” in Proc. Eur. Conf. Softw. Archit., 2013, pp. 146-161.

O. Zimmermann, T. Gschwind, J. Kister, F. Leymann, and
N. Schuster, “Reusable architectural decision models for enter-
prise application development,” in Proc. Int. Conf. Qual. Softw.
Archit., 2007, pp. 15-32.

R. Capilla, F. Nava, and C. Carrillo, “Effort estimation in captur-
ing architectural knowledge,” in Proc. 23rd IEEE/ACM Int. Conf.
Automated Softw. Eng., 2008, pp. 208-217.

M. Razavian, A. Tang, R. Capilla, and P. Lago, “In two minds:
How reflections influence software design thinking,” J. Softw.:
Evol. Process, vol. 28, no. 6, pp. 394426, 2016.

D. Tofan, et al., “Empirical evaluation of a process to increase con-
sensus in group architectural decision making,” Inf. Softw. Tech-
nol., vol. 72, pp. 31-47, 2016.

M. Castellani, “Cognitive tools for group decision making: The
repertory grid approach revisited,” Technol. Supporting Reasoning
Communities Collaborative Decision Making: Cooperative Approaches:
Cooperative Approaches, 2010, pp. 172-192.

S. Rekha and H. Muccini, “Suitability of software architecture
decision making methods for group decisions,” in Proc. Eur. Conf.
Softw. Archit., 2014, pp. 17-32.

V. Cortellessa, R. Mirandola, and P. Potena, “Managing the evolu-
tion of a software architecture at minimal cost under performance
and reliability constraints,” Sci. Comput. Program., vol. 98, pp. 439—
463, 2015.

V. Cortellessa, F. Marinelli, and P. Potena, “Automated selec-
tion of software components based on cost/reliability trade-
off,” in Software Architecture. Berlin, Germany: Springer, 2006,
pp- 66-81.

P. Potena, “Composition and tradeoff of non-functional attributes
in software systems: Research directions,” in Proc. 6th Joint Meet-
ing Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng.:
Companion Papers, 2007, pp. 583-586.

V. Cortellessa, F. Marinelli, and P. Potena, “An optimization
framework for build-or-buy decisions in software architecture,”
Comput. Operations Res., vol. 35, no. 10, pp. 3090-3106, 2008.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

259

T. Kramer and M. Eschweiler, “Outsourcing location selection
with soda: A requirements based decision support methodology
and tool,” in Advanced Information Systems Engineering. Berlin,
Germany: Springer, 2013, pp. 530-545.

T. Kramer, A. Heinzl, and K. Spohrer, “Should this software com-
ponent be developed inside or outside our firm?—A design sci-
ence perspective on the sourcing of application systems,” in New
Studies in Global IT and Business Service Outsourcing. Berlin, Ger-
many: Springer, 2011, pp. 115-132.

S. U. Khan, M. Niazi, and R. Ahmad, “Factors influencing clients
in the selection of offshore software outsourcing vendors: An
exploratory study using a systematic literature review,” J. Syst.
Softw., vol. 84, no. 4, pp. 686—699, 2011.

J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis
of the open souce software development community,” in Proc.
38th Annu. Hawaii Int. Conf. Syst. Sci., 2005, pp. 198a-198a.

M. Bergquist and J. Ljungberg, “The power of gifts: Organizing
social relationships in open source communities,” Inf. Syst. J., vol.
11, no. 4, pp. 305-320, 2001.

M. Morandini, A. Siena, and A. Susi, “Risk awareness in open
source component selection,” in Business Information Systems.
Berlin, Germany: Springer, 2014, pp. 241-252.

R. Land, L. Blankers, M. Chaudron, and I. Crnkovi¢, “COTS selec-
tion best practices in literature and in industry,” in High Confidence
Software Reuse in Large Systems. Berlin, Germany: Springer, 2008,
pp- 100-111.

T. Wanyama and B. Far, “An empirical study to compare three
methods for selecting COTS software components,” Int. |. Comput.
ICT Res., vol. 2, no. 1, pp. 34—46, 2008.

E. Papatheocharous, K. Petersen, A. Cicchetti, S. Sentilles, S. M. A.
Shah, and T. Gorschek, “Decision support for choosing architec-
tural assets in the development of software-intensive systems:
The GRADE taxonomy,” in Proc. Eur. Conf. Softw. Archit. Work-
shops, 2015, pp. 48:1-48:7.

R. K. Yin and K. A. Heald, “Using the case survey method to ana-
lyze policy studies,” Administ. Sci. Quart., vol. 20, pp. 371-381,
1975.

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied
Logistic Regression, vol. 398. Hoboken, NJ, USA: Wiley, 2013.

J. Miller, “Statistical significance testing—-a panacea for software
technology experiments?” J. Syst. Softw., vol. 73, no. 2, pp. 183—
192, 2004.

(2016). International software product management association
(ISPMA), “SPM syllabus foundation level v.1.3,” [Online]. Avail-
able: http:/ /community.ispma.org/wp-content/uploads /2014 /
12 /ISPMA-SPM-FL-Syllabus-V.1.3.pdf

J. Strydom, Introduction to Marketing. Claremont, South Africa:
Juta and Company Ltd, 2005.

D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-
making techniques for software architecture design: A compara-
tive survey,” ACM Comput. Surveys, vol. 43, no. 4, 2011, Art. no. 33.
P. Berander and A. Andrews, “Requirements prioritization,” in
Engineering and Managing Software Requirements. Berlin, Germany:
Springer, 2005, pp. 69-94.

S. Barney, K. Petersen, M. Svahnberg, A. Aurum, and H. T.
Barney, “Software quality trade-offs: A systematic map,” Inf.
Softw. Technol., vol. 54, no. 7, pp. 651-662, 2012.

A. Rubin, Statistics for Evidence-Based Practice and Evaluation.
Boston, MA, USA: Cengage Learning, 2012.

K. Wnuk, J. Kabbedijk, S. Brinkkemper, B. Regnell, and D. Callele,
“Exploring factors affecting decision outcome and lead time in
large-scale requirements engineering,” J. Softw.: Evol. Process,
vol. 27, no. 9, pp. 647-673, Mar. 2015.

A. M. Davis, “The art of requirements triage,” IEEE Comput.,
vol. 36, no. 3, pp. 42-49, 2003.

C. Wohlin, K. Wnuk, D. Smite, U. Franke, D. Badampudi, and
A. Cicchetti, “Supporting strategic decision-making for selection of
software assets,” in Proc. 7th Int. Conf. Softw. Business, 2016, pp. 1-15.
C. Gencel and K. Petersen, “Worldviews, research methods, and
their relationship to validity in empirical software engineering
research,” in Proc. Int. Workshop Softw. Meas., 2013, pp. 81-89.

J. Carlson, E. Papatheocharous, and K. Petersen, “A context model
for architectural decision support,” in Proc. 1st Int. Workshop Deci-
sion Making Softw. ARCHit., 2016, pp. 9-15.

B. Kitchenham, “Procedures for performing systematic reviews,”
Keele Univ., Keele, UK., Tech. Rep. TR/SE-0401, vol. 33, no. 2004,
pp- 1-26, 2004.

http://community.ispma.org/wp-content/uploads/2014/12/ISPMA-SPM-FL-Syllabus-V.1.3.pdf
http://community.ispma.org/wp-content/uploads/2014/12/ISPMA-SPM-FL-Syllabus-V.1.3.pdf

260 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.3, MARCH2018

Kai Petersen received the PhD degree from
BTH, in 2010. He is a professor in the Blekinge
Institute of Technology (BTH), Sweden. His
research focuses on software processes, soft-
ware metrics, Lean and agile software develop-
ment, quality assurance, and software security in
close collaboration with industry partners. He has
authored more than 70 research works in interna-
tional journals and conferences.

Deepika Badampudi is working toward the PhD
degree in the Blekinge Institute of Technology.
Her research interests include component-based
software engineering, agile software develop-
ment, and evidence-based software engineering.

Syed Muhammad Ali Shah received the MSc
degree in software engineering from the Blekinge
Institute of Technology, Sweden, and the doctor-
ate degree (PhD) in software engineering from
Politecnico di Torino, Italy. He is a research con-
sultant with Software Quality Systems AB, Swe-
den. He was senior researcher in the Software
and Systems Engineering (SSE) Laboratory,
Swedish Institute of Computer Science (SICS).
Prior to this, he was an ERCIM (Marie-Curie)
post-doctoral fellow with SICS. His research
focus is on empirical software engineering, software testing and quality.
He was research assistant in software engineering lab for approximately
three years at Politecnico di Torino, Italy.

Krzysztof Wnuk is an assistant professor in
the Software Engineering Research Group
(SERL), Blekinge Institute of Technology, Swe-
den. His research interests include market-
driven software development, requirements
engineering, software product management,
decision making in requirements engineering,
large-scale software, system and requirements
engineering and management and empirical
research methods. He is interested in software
business, open innovation, and open source
software. He works as an expert consultant in software engineering
for the Swedish Software Industry.

& Tony Gorschek is a professor of software engi-
neering in the Blekinge Institute of Technology-
where he works as a research scientist in close
collaboration with industrial partners. He has
more than 15 years industrial experience as a
CTO, senior executive consultant and engineer,
but also as chief architect and product manager.
In addition, he is a serial entrepreneur with five
startups in fields ranging from logistics to internet
based services and algorithmic stock trading. At
present he works as a research leader and in
several research projects developing scalable, efficient and effective sol-
utions in the areas of Requirements Engineering, Product Management,
Value based product development, and Real Agile and Lean product
development and evolution. www.gorschek.com tony.gorschek @bth.se

Efi Papatheocharous received the BSc degree
in computer science from the Department of
Computer Science, University of Cyprus, in 2004,
the MSc degree in advanced computer science
with ICT management from the University of Man-
chester, in 2005, and the PhD degree in computer
science from the University of Cyprus, in 2012.
She is a senior researcher in the Swedish Insti-
tute of Computer Science (SICS). Prior to this,
she was an ERCIM post-doctoral research fellow
with SICS and a lecturer in the Department of
Computer Science, University of Cyprus. She is currently carrying out
core processes at the Software and Systems Engineering (SSE) Labora-
tory, SICS, and her research focus is empirical studies for systems and
software engineering. Her primary research interests include software
cost estimation, computational intelligence, agile software engineering,
systems-of-systems, software ecosystems, and human factors in soft-
ware engineering. Since 2006, she has been collaborating in a number
of research projects at a National and European level and contributing to
the research community with many papers published in peer reviewed
books, international conference proceedings journals.

Jakob Axelsson (M’'01-SM’05) received the MSc
degree in computer science, in 1993, followed by
the PhD degree in computer systems in 1997,
both from Linking University, Sweden. He was with
Volvo Technological Development, Goteborg,
Sweden, from 1997-2001, and then moved to
Volvo Car Corporation in the same city, where he
was responsible for research and advanced engi-
neering of electrical and electronic systems
between 2001-2010, and also became a six Sigma
Black Belt. In 2004, he became a part-time adjunct
professor with Malardalen University, Vasteras, Sweden, and in 2011 a full
professor at the same university. Since 2010, he has also been in the
Swedish Institute of Computer Science (SICS), Kista, Sweden, where he
is founder and director of the Software and Systems Engineering Labora-
tory. He is the author of more than 90 research publications. His research
interests are focused on system architecture for embedded and cyber-
physical systems, and system-of-systems engineering. He is a member of
INCOSE, and has served as chairman of the Swedish section. He
received best paper awards at the IEEE International Conference on Engi-
neering of Computer-Based Systems in 2008, and at the Euromicro Con-
ference on Software Engineering and Advanced Applications in 2014. He
is a senior member of the IEEE.

Séverine Sentilles received the MSc degree in
computer science with specialization in soft-
ware engineering from the University of Pau
and Pays de I'Adour, France, in 2006, and the
licentiate and PhD degrees in computer sci-
ence and engineering from Malardalen Univer-
sity, Sweden, in 2009 and 2012, respectively.
She is currently assistant professor in the
School of Innovation, Design and Engineering,
Malardalen University. Her main research inter-
ests include component-based software engi-
model-driven engineering, and software quality (extra-

neering,
functional properties).

www.gorschek.com

PETERSEN ETAL.: CHOOSING COMPONENT ORIGINS FOR SOFTWARE INTENSIVE SYSTEMS: IN-HOUSE, COTS, OSS OR... 261

lvica Crnkovic received the MSc degree in elec-
trical engneering, the MSc degree in theoretical
physics, and the PhD in computer science, in
1991, all from the University of Zagreb, Croatia. He
is a professor of software engineering with Chalm-
ers University, Gothenburg, and Malardalen Uni-
versity, Vasteras, and a guest professor with the
University of Osijek, Croatia. He is the director of
ICT Area of Advance with Chalmers University. His
research interests include component-based soft-
ware engineering, software architecture, software
development processes, and software engineering for large complex sys-
tems. He is the author of more than 200 refereed publications on software
engineering topics, and guest editor of a number of special issues in differ-
ent journals and magazines, such as the IEEE Software, and Elsevier the
Search Results Journal of Systems and Software. He has been general
chair of several top-level software engineering conferences (such as ICSE
2018, ECSA 2015, ASE 2014, Comparch & WICSA 2011, ESEC/FSE
2007,) and PC chair (COMPSAC 2015, ECSA 2012, Euromicro SEAA
20086, etc.). His teaching activities cover several courses in the area of
Software Engineering undergraduate and graduate courses. From 1985
to 1998, Ivica Crnkovic worked with ABB, Sweden, where he was respon-
sible for software development environments and tools. More information
is available on http://www.ivica-crnkovic.net.

Antonio Cicchetti received the PhD degree in
computer science from the University of L’Aquila
with the thesis entitled “Difference Representa-
tion and Conflict Management in Model-Driven
Engineering”, in 2008. He is an associate profes-
sor in the IDT Department, Malardalen University,
Sweden. His research interests include the inter-
play of model-driven and component-based engi-
neering techniques and their application in the
development of industrial systems. Moreover, he
investigates the general problems related to the
design of modelling languages, mutiview systems, and model transfor-
mations, in the context of both academic research and industrial applica-
tion. Further, he is interested in the concerns related to the management
of evolution of both language and models. He can be reached at antonio.
cicchetti@mdh.se. For more information see also http://www.es.mdh.se/
~acicchetti/.

W
s

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

http://www.ivica-crnkovic.net
http://www.es.mdh.se/~acicchetti/
http://www.es.mdh.se/~acicchetti/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

